トラス橋部材破断がSSMA分析結果 に及ぼす影響の数値的検討

石川幹生 筑波大学大学院システム情報工学研究科
山本亨輔 筑波大学システム情報系

社会ニーズと技術的解法

Background

技術的解決法

Technical Solutions

既往の研究

Previous Studies

山本亨輔,伊勢本遼,大島義信,金哲佑,杉浦邦征:鋼トラス橋の部材破断が橋梁および走行車両の加速度応答に及 ぼす影響,構造工学論文集,Vol.58A, pp.180-193, 2012

中釜祐太:模型桁実験による車両応答を用いたモー ド形状推定法の桁損傷検知への適用性に関する検討, 筑波大学理工学群工学システム学類卒業論文,2014. Kyosuke Yamamoto, Mikio Ishikawa: Relationship between SSMA and vehicle run speed, the 27th KKHTCNN Symposium on Civil Eng., Shanghai, China, 2014.

Purpose

数値シミュレーションモデル

車両モデル

車両モデノ	ルパラメ・	ータ

バネ上	
質量	18000[kg]
減衰定数	10000[kg/s]
バネ定数	$1000000[kg/s^2]$
慣性モーメント	$65000[kg \cdot m^2]$
(ピッチ方向)	
慣性モーメント	$15000[kg \cdot m^2]$
(ロール方向)	
長さ	3.75[<i>m</i>]
幅	1.8[m]
バネ下	
質量	1100[kg]
減衰定数	30000[kg/s]
バネ定数	$3500000[kg/s^2]$

(縦方向)

(横方向)

40[m]

6[m]

20

10

 $2400[kg/m^3]$

0.4[m]

 $25 \times 10^{9} [Pa]$

 $7800[kg/m^3]$

 200×10^{9} [*Pa*]

 $\frac{0.02[m^2]}{1.0 \times 10^{-4}[m^4]}$

 $78 \times 10^{9} [Pa]$

 $1.0 \times 10^{-6} [m^4]$

橋梁モデル

橋梁モデルパラメータ

要素分割数

長さ

密度

厚さ

密度

ヤング率

ヤング率

断面二次モーメント

断面二次極モーメント

せん断弾性係数

断面積

幅

全体寸法

トラス部材

床板

高速アルゴリズムを採用

数値シミュレーションの実施

Numerical Examination

橋梁のたわみ応答

		L	L		
1	1	1	1	,	
i					
	1	1	1		1
	1	1	1		
	1	1	1		1
	1	1	1		
		1	1		
		1	1		
		1	1	•	1
	1	1			

パラメトリック分析

- 破断部材・・・破断斜材は1~10まで
- **路面凹凸**・・・路面変化 = 交通荷重特性の変化
- **車両速度・・・**既往の研究におけるパラメータ
- 白色雑音・・・走行毎のばらつきを考慮

SSMA分析が有効な条件を検討

・車両走行側が損傷したとき、SSMA変化大

車両速度の変化による影響

Results

白色ノイズを用いたSSMA分析の有効性検討

Results

まとめ

