

力学的システムの 動的シミュレーション

Dynamic Simulation for Mechanical System

Vehicle-Bridge Interaction

作成:2018年6月5日

Today's Goal

Numerical Solutions of Equation of Motion

(運動方程式の数値<mark>解</mark>)

D Equation of Motion: $\{F\} = [M]\{\ddot{x}\}$

- **\square** {*F*} External Force Vector (*F* \in \mathbb{R}^n): input, usually given
- **D** [M] Mass Matrix ($\mathbf{M} \in \mathbb{R}^{n \times n}$): system parameter
- **\square** {*x*} Displacement Vector ($x \in \mathbb{R}^n$): output, or solution
- Considering a mechanical "system", force and displacement fields are input and output of the system, respectively
- **D** A matrix acting on the output is system parameters: e.g.) Mass Matrix **M** and Stiffness Matrix \mathbf{K} ($f = \mathbf{K}\mathbf{x}$)
- **口** *n* is DOF (degree of freedom, 自由度): = "**point**" × "**direction**"
- **D** The displacement field $\{x\}$ is the "solution" of the equation of motion as "differential equation"
- □ So-called "Simulation" is a method to calculate solutions numerically (numerical solution)

\Box Equilibrium: $\ddot{x} = 0$

\square The sum of external force equals to zero: F = 0

D The acceleration (the change of motion) becomes zero from $F = m\ddot{x}$

□ Inertia: "object keeps its state of motion" = "no force, same velocity"

$$f = kx$$

D Free Vibration: f = 0

□ If there is no Load: *f*, the system is in the state of free vibration

□ The equation of motion becomes LHDE: Linear homogeneous Differential Equation

$$m\ddot{x} + kx = 0$$

Analysis

D Function File:

Example 01: Numerical Simulation of Free Vibration for SDOF by Forward Differential

D Launcher Script:

m	k	Δt	<i>v</i> (0)	т	k	Δt	v(0)
1.0	1.0	0.0001	1	1.0	1.0	0.01	1

<pre>[t, x] = ex_01_sdof(m, k, X, dt, T) [t, x] = ex_01_sdof(1, 1, [0;0.0001], 0.0001, 100); figure(1): plot(t,x)</pre>	$v(0) = \frac{X(1) - X(0)}{\Delta t}$
<pre>set(gca, 'XLim', [0 100], 'XGrid', 'on') set(gca, 'YLim', [-1.5 1.5], 'YGrid', 'on') set(gca, 'FontSize', 18) print('ex_01_sdof_01', '-dmeta', '-r1200') print out</pre>	visualization
<pre>[t, x] = ex_01_sdof(1, 1, [0;0.01], 0.01 ,100); figure(2); plot(t,x) set(gca, 'XLim', [0 100], 'XGrid', 'on') set(gca, 'YLim', [-1.5 1.5], 'YGrid', 'on') set(gca, 'FontSize',18) print('ex_01_sdof_02','-dmeta','-r1200')</pre>	-0.5 -1 -1.5 0 20 40 60 80 100

Example 01: Numerical Simulation of Free Vibration for SDOF by Forward Differential

Results and Discussion

$$(m + \Delta t\gamma c + \Delta t^2 \beta k)\ddot{x}(t) = f(t) - \left\{\Delta t(1 - \gamma)c + \Delta t^2 \left(\frac{1}{2} - \beta\right)k\right\} \ddot{x}(t - \Delta t) - \{c + \Delta t k\}\dot{x}(t - \Delta t) - kx(t - \Delta t)$$

Discretized Equation:

$$\ddot{x}(t) = \underbrace{\frac{f(t) - \left\{\Delta t(1-\gamma)c + \Delta t^2 \left(\frac{1}{2} - \beta\right)k\right\} \ddot{x}(t-\Delta t) - \left\{c + \Delta t k\right\} \dot{x}(t-\Delta t) - kx(t-\Delta t)}{(m + \Delta t\gamma c + \Delta t^2 \beta k)}}_{\text{known}}$$

MDOF: Multi-Degree of Freedom

□ Governing Equation: $\begin{aligned}
\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) &= \mathbf{f}(t) \\
\mathbf{D} \text{ iscretization:} \\
\dot{\mathbf{x}}(t) &= \dot{\mathbf{x}}(t - \Delta t) + \Delta t \left((1 - \gamma)\ddot{\mathbf{x}}(t - \Delta t) + \gamma \ddot{\mathbf{x}}(t) \right) \\
\mathbf{x}(t) &= \mathbf{x}(t - \Delta t) + \Delta t \cdot \dot{\mathbf{x}}(t - \Delta t) + \Delta t^2 \left(\left(\frac{1}{2} - \beta \right) \ddot{\mathbf{x}}(t - \Delta t) + \beta \ddot{\mathbf{x}}(t) \right)
\end{aligned}$

D Substitution:

$$(\mathbf{M} + \Delta t \gamma \mathbf{C} + \Delta t^2 \beta \mathbf{K}) \ddot{\mathbf{x}}(t) = \mathbf{f}(t) - \left\{ \Delta t (1 - \gamma) \mathbf{C} + \Delta t^2 \left(\frac{1}{2} - \beta\right) \mathbf{K} \right\} \ddot{\mathbf{x}}(t - \Delta t) - \{\mathbf{C} + \Delta t \mathbf{K}\} \dot{\mathbf{x}}(t - \Delta t) - \mathbf{K} \mathbf{x}(t - \Delta t)$$

Discretized Equation:

$$\ddot{\mathbf{x}}(t) = [\mathbf{M} + \Delta t \gamma \mathbf{C} + \Delta t^2 \beta \mathbf{K}]^{-1} \left\{ \mathbf{f}(t) - \left\{ \Delta t (1 - \gamma) \mathbf{C} + \Delta t^2 \left(\frac{1}{2} - \beta\right) \mathbf{K} \right\} \ddot{\mathbf{x}}(t - \Delta t) - \{\mathbf{C} + \Delta t \mathbf{K}\} \dot{\mathbf{x}}(t - \Delta t) - \mathbf{K} \mathbf{x}(t - \Delta t) \right\}$$

$$\begin{array}{c} A\ddot{x}(t) = b(t) \\ Global \\ Matrix \end{array} \qquad \begin{array}{c} \ddot{x}(t) = A^{-1}b(t) \\ Fight-Hand Side \end{array} \qquad \begin{array}{c} \ddot{x}(t) = A^{-1}b(t) \\ Fight-Hand Side \end{array} \qquad \begin{array}{c} The problem of \\ Inverse Matrix \end{array}$$

Launcher Script:

Example 03: Numerical Simulation of MDOF by Newmark-β method

D Visualization

IMAGINE THE FUTURE,