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GRAIN ROTATION VERSUS CONTINUUM ROTATION DURING
SHEAR DEFORMATION OF GRANULAR ASSEMBLY

TAKASHI MATSUSHIMAYD, HIDETAKA SAOMOTOW, YOSUKE TSUBOKAWA! and YASUO YAMADAD

ABSTRACT

The importance of grain rotation during shear deformation has been widely recognized in the mechanics of granular
materials, which has led to extensive use of the Cosserat continuum theory in localization problems. Strain gradient
theory, which relates the macro deformation gradient to higher-order stresses, is another possibility to overcome the
ill-posedness of governing equations. This paper attempts to show an experimental basis for applying strain gradient
theory to granular media. LAT (Laser-Aided Tomography), a technique to visualize the interior of 3-D granular
assembly, is used to detect the grain rotation as well as the continuum rotation. A Discrete Element simulation is also
conducted to reinforce the experimental data. It is concluded that the average grain rotation is roughly identical to the
continuum rotation, which supports the applicability of rotational gradient theory, a particular case of strain gradient

theory from the micro-mechanical point of view.

Key words: Cosserat continuum, DEM (Discrete Element Method), LAT (Laser-Aided Tomography), micromechan-
ics of granular materials, strain gradient theory IGC:D6)

INTRODUCTION

The localization of deformation in softening material
has been a major research topic in the field of mechanics.
In recent decades, this problem has often been discussed
together with the mesh dependency in finite element simu-
lation (Bazant, 1984; de Borst, 1991). To overcome this
difficulty, generalized continuum theories (Kroner, 1968)
such as the Cosserat continuum theory and the strain
gradient theory have been incorporated into the formula-
tion of governing equations (de Borst, 1991; Fleck and
Hutchinson, 1997; Chambon et al., 2001; Matsushima
et al., 2002), and extensive efforts for application have
been investigated for various materials and situations
(Murakami et al., 1997; Adachi et al., 1997; Miihlhaus
et al., 2001).

Another important issue is the problem of ‘size effect’.
It is recognized that the bearing capacity of a footing on
sand deposit increases with decreasing footing size if the
size of sand grains stays unchanged (Tatsuoka et al.,
1991). The dynamic stability of rock-fill dam and ballast-
ed railway track are also examples of the size effect. This
effect can be expected in every granular structure whose
particle size is not sufficiently small in comparison with
the whole structure size or, more specifically, with the
deformation pattern. Since classical continuum theories
cannot deal with this type of micromechanical effects,
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some researchers have tried to apply the Cosserat con-
tinuum theory (Tejchman and Herle, 1999).

The Cosserat continuum contains additional variables
for micro rotation, and their gradients (curvatures) are
caused by higher-order stresses (couple stresses). The
strain gradient theory, on the other hand, does not
include an additional variable; macro deformation
gradients are related to the higher-order stresses (double
stresses). It seems that the Cosserat theory is more suita-
ble for geomaterials than the strain gradient theory,
because grain rotation should be essentially independent
from macro rotation (continuum rotation). In this way,
the Cosserat theory has been studied extensively in
the field of particulate mechanics (Miihlhaus and
Vardoulakis, 1987; Bardet and Proubet, 1991; Oda and
Iwashita, 2000). However, it should be also considered
that the Cosserat theory cannot control the mode I locali-
zation (pure tension) (de Borst and Miihlhaus, 1992). In
that sense, the strain gradient theory is more relevant in
the failure analysis of cohesive-frictional materials from
the computational point of view.

Physical interpretation of the strain gradient theory is
still not clear in comparison with the Cosserat theory.
Each theory can be considered as a special case of micro-
structured continuum theory (Mindlin, 1964; Eringen,
1968), in which all micro deformation gradients are treat-
ed as independent variables. In this context, the strain
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gradient theory is understood as a phenomenological sim-
plification, where the micro variables are made identical
to the macro variables, and therefore extensive ex-
perimental verification is necessary for its application to
geomaterials. However, it is not an easy task to observe
grain rotation and to compare it quantitatively with con-
tinuum rotation in real granular materials. Some re-
searchers have attempted this comparison by Discrete
Element Method (Bardet and Proubet, 1991; Choi and
Muhlhaus, 1991) or by experiment with circular rods
(Calvetti et al., 1997). According to the experiment by
Calvetti et al. (1997), the average of grain rotation is in
good agreement with continuum rotation when principal
stress directions do not rotate. This result suggests that
the strain gradient theory is applicable to granular
materials from a micromechanical point of view.

This paper attempts further verification on the
relationship between grain rotation and continuum
rotation in granular materials during shear deformation.
The related theories are briefly outlined in the next section
to clarify the problem. The main part of this paper is an
experiment work using LAT (Laser-Aided Tomography)
(Konagai et al., 1992; Matsushima et al., 2002); a visuali-
zation technique for 3-D granular assembly. The grain
rotation as well as the continuum rotation in the interior
of a granular slope model under plane strain deformation
are visualized and quantified with the aid of an image
analysis technique. The grains used in this experiment are
3-D and have irregular shape as natural sand grains. A
supplementary simulation by DEM is also conducted to
confirm the experimental results, to make a fruitful dis-
cussion and to draw a clearer conclusion.

THEORY OF MICROSTRUCTURED CONTINUUM

General Theory

It is pertinent to review a class of microstructured
continuum theory (Mindlin, 1964), from which the strain
gradient theory and the Cosserat theory are derived by
assuming some mathematical constraints (Chambon et
al., 2001). Moreover, it is necessary to make clear how
the quantities in this continuum theory can be interpreted
with those in granular medium.

The theory begins with the assumption that kinematics
of microstructure such as grains, micro cracks and so on
cannot be measured in a macroscopic sense, but will
contribute to the virtual work of the material during
deformation. Global coordinates and displacements
(measurable displacement) of a representative volume V
are denoted as x; and u;, respectively. Then local coor-
dinates x/ are assumed within ¥, which moves transla-
tionally sticking to the material point but does not rotate.
The micro-displacement #{ in a micro domain is de-
scribed with these local coordinates and is assumed to be
expressed by a linear function of x{:

u{ = Wi Xt (@))]

where ;. is a constant in a micro domain but a function
of x;, that is:

Wik = Wi (x1). ()

wi is understood as a gradient of micro displacement
within a micro domain. It should be noted that sy is
independent from macro displacement gradient du; /dxy
in this general theory. Now, relative deformation is
defined as:

ou;

— =y 3

Yij= ax;

Additionally, yix is defined as a gradient of wi with
respect to x;:
i;
k= . 4
Aijk ox, ( )
where, y;; and xi; are only functions of x.
The components of macro strain and rotation under
small strain are defined as follows:

1 (9w auj
= + ,
Gi=7 (axj Bxi> (5a)
_ 1 (ou_ow
Wi = 2 (a.Xj axl> (Sb)

Then virtual work is defined as:
ow= W(58ij, 0%ij, 5Xijk)

It can be easily recognized that rigid rotation, where ;;
stays at zero, does not affect W.

On the basis of this assumption, the conjugate stresses
are defined as:

oW
Oji = 38” = 0ijj (63.)
ow
= 6b
Tj P (6b)
14
Ki=TTT . 6
Uik i (6¢)

o5 is symmetric but this is not the case in general for 7;;.
Uik is called the double stress tensor in this paper, which is
a general form of the couple stress tensor in Cosserat
continuum.

Accordingly the weak-form equilibrium is described
as:

§ 5WdV=§ (07108 + 15:0Yi; + Ui OXis))AV =0Pexi  (7)
v v

where JP., is an external work caused by body force G;
and boundary forces #; and T; which are conjugate with
ou; and Jw;; on kinematically-assigned boundaries.
Therefore, it can be described as:

5Pex1:S GiéuidV+S (tioui+ Tyowi;)dl . 8)
v T,
From these equations together with divergence theorem,
the strong-form equilibrium is derived as:

a5+ 13)

+ Gi = 0
an

(%a)
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T+ Wi _ 0. (9b) Bi=K o (18b)
axk v
Finally, the corresponding constitutive equations can be where ,
expressed as follows: o= a5+ 6 + T, (19a)
Gij=Kfjuu (10a) Wi = €k P (19b)
=K 1
" Km;l . (100) Mtk =~ €t s (19¢)
Hijkc = K 5jxamn Ximn- (10¢c)
ou; _
e =_—"6k Wk (19d)
X

Strain Gradient Theory
The strain gradient theory is understood as a particular
case of the above-mentioned microstructured continuum
with the following constraint:
au;

376;‘— Wik,

an

which means that the micro displacement gradient sy is
identical to the macro displacement gradient. Hence, the
governing equations yield:

09X 0Xi
(12)

25 ;
(weak-form) S owdv = S (ajiésij + Ui g ou >
14 14

=0Pex

305 ki
0Xx;  0X;0xk
(constitutive equations) o;;=K {j€u

(strong-form) +G;=0

(13)

(14a)

¥ uy
ijklmn ax

i. :K
Hise n0Xn

(14b)
It should be noted that no additional kinematic variable
is included in the equations and that the double stress
tensor is related to the second gradient of displacement.

Cosserat Continuum Theory
The Cosserat theory can also be derived from the
microstructured continuum theory by assuming:

15)

where the subscript (ij) denotes the symmetric part of the
tensor. yg; is a micro strain so to speak, and only the
micro rotation yy;, where the subscript [ij] denotes the
anti-symmetric part, is valid in the Cosserat continuum.
Some mathematical derivation leads to the well-known
set of equations:

Wi =0,

)

(weak-form) S oWdv = E (a}‘f oe; + ﬂjié(?’%))dV
1 4 |4

= 6Pex1 (16)
Kl
(strong-form) o +Gi=0 (17a)
i
eumott — 2B _ (17b)
axi
(constitutive equations) o' =K fen (18a)

where o} denotes measurable stress which is not neces-
sarily symmetric, #; denotes Cosserat rotation which is
independent from continuum rotation, and i, denotes
couple stress tensor.

Rotational Gradient Theory
Applying Eq. (15) directly into Eq. (7), we obtain
another weak-form for the Cosserat continuum:

(weak-form) S wd V=S (g5 + 1G0)O¢€i;
vV Vv

+ 7150 60(wi; — W)
+ Ui Xk )AV
= 5Pext

where w;; denotes continuum rotation tensor;

o L (oo
T2 \0x ox

Now the term 7(;;d(cwi; — wypj)) is essentially related to the
objective of this paper. yyy is called micro rotation or
Cosserat rotation tensor, which has often been discussed
in relation to grain rotation (Muhlhaus and Vardoulakis,
1987; Bardet and Proubet, 1991; Oda and Iwashita,
2000). If this micro rotation (= grain rotation) equals the
continuum rotation (macro rotation) in granular medi-
um, the term 770(wi; — Wyj;) vanishes and the mathemati-
cal framework of the theory is identical to that of the
strain gradient theory. This particular case of the strain
gradient theory, which we call ‘rotational gradient theo-
ry’, has a big advantage in that no additional micro varia-
ble is included in the theory and that only the anti-sym-
metric part of the strain gradient is incorporated. These
features allow us to reduce both kinematic variables and
the material constants in the higher-order constitutive
equation (Eq. (14b)).

It is worth mentioning that Eqgs. (16) to (18) in Cosserat
theory can also be used in rotational gradient theory with
the following interpretation:

1
M _ - —_ _ - — —
Gji =05+ Ty, €@ Wk= Wi = Wij = €k WO, Ujikil = "= €l

2
1 [du;  Ou;
€ij = + !
2 \ox; ox
In this framework, measurable stress g} and the corre-
sponding strain e;; are both symmetric, {; equals continu-
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Fig. 1. Grains used in this study (left: D=2 mm-5 mm, right D=
5 mm-10 mm)

Table 1. Material parameters

Young’s modulus Poisson’s

Glass t 3 )

ass type s (g/cm’) (Gpa) ratio

S-BSL7 2.52 78.4 0.205
Table 2. Grain parameters

Grain type Diameter range €min Cnax
Type 1 2 mm-5 mm 0.670 0.922
Type 2 5 mm-10 mm 0.650 0.935

um rotation w;;, and couple stress fiy still remains as a
conjugate of w;;. In other words, couple stress does not
always require the grain rotation as independent varia-
bles.

EXPERIMENT BY LASER-AIDED TOMOGRAPHY

Outline of LAT Experiment

The visualization technique used in this study is called
Laser-Aided Tomography (LAT) developed by Konagai
et al. (1992, 1994). Grains used in LAT experiment are
produced by crushing and grinding high-quality optical
glass blocks. Figure 1 is a photograph of the grains used
in this study. Type 1 (Diameter range=2 mm to 5 mm)
and Type 2 (Diameter range=35 mm to 10 mm) are just
sieved apart from the original grains which were ground
for 6 hours by a ball mill after crushing. The fundamental
properties of the glass itself and grains are listed in
Tables 1 and 2, respectively.

In LAT experiment, the grains must be submerged in
liquid which has exactly the same refractive index as the
glass. In this condition, glass grains are invisible in the
liquid. A laser light sheet is then passed through the speci-
men, which illuminates the contour of the grains within
the optically cut cross section (Fig. 2). Therefore, it
becomes possible to observe the grain motion in an ar-
bitrary cross section of 3-D granular specimen. Scanning
the model by laser light sheet successively, a 3-D image of
every grain can also be obtained (Matsushima et al.,
2002).

Liquid with the same
refractive index as
the glass

Crushed glass

|| Laser Light
| Sheet

Fig. 2. Diagram of Laser-Aided Tomography

Fig. 3.

An example of edge detection

Image Processing Method

In order to quantify each grain location and shape in
LAT imageries, some image analyzing technique suitable
for LAT is necessary. A semi-automatic graphical users
interface (GUI) has been developed for this purpose,
which allows for a man-computer interactive operation in
which an operator can identify a grain by roughly tracing
its contour by a mouse pointer. Then, the computer finds
the pixels which has the maximum light intensity among
the neighboring pixels (Fig. 3). Once grain contour is dig-
itally detected, the gravity center, area, principal axes of
the grain, etc. can be computed straightforwardly.

Experimental Setup

Slope stability tests were conducted in this study. Two
types of grains having the following diameters (Type 1: D
=2-5mm, Type 2: D=5-10 mm, see Table 2) are piled
up in an acrylic water tank full of the above-mentioned
liquid in the same slope configuration illustrated in Fig. 4.
In order to make the slope as dense as possible in the
liquid, each liquid-pluviated layer of 2 cm thick was com-
pacted by a falling weight. In order to reduce the friction
between grains and the walls of the water tank, tempered
glass plates are put between them. Then an acrylic footing
of 3.3 cm wide was penetrated with the speed of 1.0 mm/
min, and the vertical load and displacement were meas-
ured during the test.
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settlement of footing § (mm)

Fig. 5. Load-displacement curve of footing

The laser light sheet was passed through the model
perpendicularly, and the observed LAT image was
photographed by two digital cameras, one for the whole
view and the other for a close-up view just beneath the
footing. The location of the laser light sheet was fixed at
2.5 cm and 3.5 cm behind the front surface of the model
of Type 1 and Type 2, respectively.

Grain Size Effect and Progressive Failure

Figure 5 shows the load-displacement curves of the
footing. It is quite clear that Type 2 model (with bigger
grains, D=5-10mm) exhibits considerably higher
strength than Type 1 model. Since maximum and mini-
mum void ratios of Type 1 grains are similar to those of
Type 2 grains, grain-shape characteristics may be similar
to each other, and accordingly the internal friction angle
of the most-densely packed specimen under uniform
deformation may not differ much in both models. There-
fore, the clear difference of strength shown in Fig. 5 is
understood as grain size effect: the effect caused by the
ratio between the size of imposed deformation pattern
and the grain size. From a viewpoint of the microstruc-
tured continuum, when gradient of rotation (macro or
micro rotation) is imposed by boundary displacements or
forces, microstructural effect (strain gradient effect or
Cosserat effect) appears, which makes the material strong-
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Fig. 4. Experimental setup .
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Fig. 6. Deformation of slope by LAT image (Type 1: D=2-5 mm)
(a) before loading and (b) after loading (6 =16 mm)

200 1 " 1 2 1 " 1 " 1 " " 1
50 100 150 200 250 300 350
x (mm)

Fig. 7. Translational displacement of grains analyzed from LAT im-
ages (Type 1: D=2-5 mm)

er. The magnitude of this effect depends on internal
length scale (grain size) involved in the higher-order
constitutive equation. Therefore, it is expected that this
kind of grain size effect can be well expressed by the
microstructured continuum theory.

It should be noted that some sudden drops in load
observed in load-displacement curves are mainly caused
by the lateral slip of the footing. Since the surface of the
footing bottom is not perfectly smooth, the footing
moves laterally according to the lateral displacement of
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Fig. 8. Deformation patterns computed from grain displacements
(Type 1: D=2-5 mm)

the granular model. When the friction force reaches a
threshold, a slip occurs between the footing and the
granular model, which affects the vertical load of the
footing.

Another important issue is progressive failure. As the
gradient of rotation becomes predominant within the
shear zone, the progressive formation of shear zone plays
an important role in the bearing capacity of footing.
Figure 6 shows the observed LAT images (whole view in
type 1 model). Since it is difficult to detect the grain shape
with good accuracy from such whole-view photographs,
only translational motion of a certain number of grains
are detected in this section as shown in Fig. 7. Additional-
ly, the tracked motion is the one within the certain verti-
cal plane sliced by laser light sheet. Therefore, it is not an
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Fig. 9. Maximum shear strain computed from deformation patterns
(Type 1: D=2-5 mm)

exact motion of the grains because the grains move and
rotate in all six degrees of freedom. However, under the
plane strain condition, major translational displacements
of the grains can be observed in the plane parallel to the
plane strain boundary, and the measured in-plane motion
must provide the major deformation pattern. Figure 8
shows the mesh deformation (mesh size =5 mm by 5 mm)
computed from the grain motion by using weighted-
average interpolation. For each nodal point, the nearest
six grains were used for the interpolation. This number of
grains was decided such that the result contains the effect
of local deformation to a sufficient extent.

This kind of interpolation is regarded as an averaging
process of discrete quantities such as grain motion.
Therefore, the resultant deformation is considered as the
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Fig. 10. Deformation pattern and maximum shear strain (Type 2: D=5-10 mm)

macro deformation in the context of microstructured
continuum theory.

After the interpolation, it is straightforward to com-
pute strain at each mesh from its nodal displacements by
linear interpolation. In other words, strain is not directly
calculated from the discrete quantity in this study.
Figure 9 shows the distribution of maximum shear strain.
This figure clearly shows that the strain localization de-
velops progressively. Together with Fig. 5, it can be
recognized that the peak strength is reached when the
localization zone entirely develops within the model to
reach the slope surface.

Figure 10 shows a deformation pattern and a distribu-
tion of maximum shear strain in Type 2 model. The set-
tlement of footing is almost the same as that at step 4 in
the Type 1 model. When comparing the deformation pat-
tern of Type 2 model with that of Type 1, Type 2 model
exhibits significant dilation near the footing. This must be
caused by the difference in shear band width between the
two models. It is well known that the shear band width is
roughly proportional to grain size (Muhlhaus and
Vardoulakis, 1987; Yoshida et al., 1994). The maximum
shear strain in the Type 2 model shown in Fig. 10(b) also
looks widely distributed in comparison with that in the
Type 1 model shown in Fig. 9 (step 4). With wider shear
zone the total volume change necessarily becomes bigger.

Grain Rotation versus Continuum Rotation

A small rectangular window beneath the footing was
chosen as the observation area for grain rotation.
Figures 11(a) and (b) show the LAT images of Type 1 and
2 models before loading. The above-mentioned grain
edge detection scheme was applied for such images,
which yields Fig. 12. In this paper, we discuss only an ap-
parent ‘‘in-plane’’ grain rotation. It is quite certain that
grains in the specimen rotate in a three-dimensional way
even under plane-strain condition (Matsushima et al.,
2000). This rotation makes the in-plane image of the
grains gradually change with respect to time. However,
according to Fig. 12, most of the grain images do not
change much, and the major rotation seems to occur in
the plane parallel to the strain-constraint plane due to
shear deformation.

In order to compute the in-plane rotation, an image-

(a) type 1: (D=2-5mm)

(b) type 2: (D=5-10mm)

Fig. 11.

Close up view of LAT image (initial state)
(a) Type 1: (D=2-5 mm) and (b) Type 2: (D =5-10 mm)

mapping algorithm shown in Fig. 13 was adopted. Since
the rotation of roundish grains is difficult to evaluate, the
original result includes a few grains showing unrealistic
rotation in the original result. Eliminating such data,
Fig. 14 demonstrates the evolution of grain rotation
through the loading steps. In the figure, positive values
mean counter-clockwise rotation. The grain rotation field
within the analyzing area is then calculated by the weight-
ed-average interpolation (Fig. 15). Comparing to Fig. 9,
one can easily recognize that the grain rotation is
predominant within the localized zone.

Finally Figs. 16(a) and (b) show the relation between
the grain rotation, 6, and the continuum rotation, 6, at
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(a) type 1: (D=2-5mm)
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(b) type 2: (D=5-10mm)

Fig. 12. Result of edge detection of the grains
(@) Type 1: (D=2-5mm) and (b) Type 2: (D=5-
10 mm)

step 4 for Type 1 and 2 models, respectively. The former
is measured at the center of each grain and the latter is
computed for the same center from the deformation
mesh shown in Fig. 8 by bilinear interpolation. Since the
deformation and rotation are far beyond the small strain
range, the continuum rotation is calculated on the basis
of rigid rotation tensor R (see Bardet and Proubet, 1991,
for example) as follows:

R=[ cos B¢

—sin 9(:

sin 9(«] e

cos Oc

where V is the left stretch tensor (symmetric) and F is the
(macro) deformation gradient. It is worth emphasizing
that this continuum rotation is calculated only from the
translational motions of the grains and does not include
the information of grain rotations.

[1] Select the grains which are clearly detectable throughout the loading
steps

[2] Loop for each grain

[3] Loop for each loading step

[4] Compute the gravity center and remove the translational motion from
the grain edge data

[5] Rotate the edge data with respect to the gravity center and compare the
edge data at the initial configuration. Detect for each edge point the
minimum distance from the edge point at the initial configuration.

[6] Compute the summation of the distance for all edge points and
determine the rotation angle which gives the minimum summation.

[7]1 Next loading step (return [3])

[8] Next grain (return [4])

Fig. 13. Algorithm to compute the in-plane rotation of grains

| type 1: D=2-5mm

grain rotation (deg.)
[e)

-10 4
220 4
-30 E
-40 1 1 1 1
0 1 2 3 4
step number
Fig. 14. Evolution of grain rotation (Type 1)

The points in the figures scatter considerably, which is
caused by the discrete nature of grain rotations. Our
focus should be put on the averaged relation shown as
dashed lines in the figures. Roughly speaking, the grain
rotation is about the same or a little bigger than the
continuum rotation. Therefore, it is suggested that the
assumption in the strain gradient theory is roughly
acceptable.

NUMERICAL RESULT BY DISCRETE ELEMENT
METHOD

In order to further discuss the relation between the
grain rotation and the continuum rotation, a series of
simple shear simulation by Discrete Element Method
were performed. Figure 17 shows the outline of the simu-
lation. Two specimens with circular grains and regular
polygonal grains, respectively, are prepared in dense
condition. The mean diameter of those grains is 2.0 cm.
Periodic boundaries are introduced on both sides of the
specimen. Keeping the confining pressure, g,, constant
(6.=0.28 N/cm), the bottom wall element is moved in
a horizontal direction. Accordingly, the specimen is
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Fig. 15. Distribution of grain rotation

sheared and a level shear band is built up as shown in
Fig. 17(b). More detailed information on this series of
simulation is described in other papers (Matsushima,
1997; Matsushima and Konagai, 2001).

Since the deformation varies only in y-direction due to
the boundary condition, the specimens were divided
horizontally into slices by the averaging process (as indi-
cated in Fig. 17(a)). The continuum rotation was com-
puted in the same manner as in LAT experiment for rec-
tangular meshes, but for slices in this case, since it
remains unchanged in horizontal direction due to the
periodic boundary condition. Grain rotations are simply
averaged for each sliced area. The relations between the
continuum rotation and the grain rotation for the two
specimens are shown in Figs. 18(a) and (b), respectively.
The average line indicates that the rotations of both
specimens are almost identical to each other. Figures
19(a) and (b) show the distribution of the rotations along
the height of the specimens. It is quite clear that the grain
rotation is scattered but its average is in good accordance
with the continuum rotation. It can be said that all the
numerical results support the insights obtained by the ex-
periment.

It is worth noting that the grain rotation is more oscil-
lated in circular grains than in regular polygon grains
possibly because the circular grains in contact tend to
rotate to an opposite direction to each other like a gear
motion, while regular polygon grains behave like a rigid
column due to the transmission of the moments at their
contacts (Iwashita and Oda, 2000; Matsushima and
Konagai, 2001).

SOME COMMENTS

The physical interpretation of the assumption that the
grain rotation is identical to the continuum rotation may
be shown in Fig. 20. Any macro deformation gradient F
can be decomposed by macro stretching ¥ and macro
rigid rotation R. Under macro rigid rotation of the
material, all the grains in the material rotate the same
amount. On the other hand, under macro stretching, the
grains rotate actively and randomly, but the average of

continuum rotation (deg.)

(a) type 1 (D=2-5mm)

40 T T T VI ¥
~ 3ol Smm-10mm step 4 . L7
@ | o o .’,’
B 20} « T . .
g 10- o ® e 0l e 4
g I o« ° :,.1, [l
9 0._ C e ,’/ *."* ° i
g -0t * Lee e .
% - ._ = /// e —
20. y—1.25/x’, . o
-30F ,’, o. B
. O . i s 1 N 1 N 1 N 1 N
300 20 -10 0 10 20 30

continuum rotation (deg.)

(®) type 2 (D=2-5mm)

Fig. 16. Relation between continuum rotations and grain rotations
(step 4)
(a) Type 1: (D=2-5 mm) and (b) Type 2: (D =5-10 mm)

their rotations remains unchanged as illustrated in
Fig. 20.

Even though the grain rotation is identical to the
continuum rotation, a non-classical term becomes active
under the existence of the gradient of continuum rota-
tion. Since grains rotate in accordance with the continu-
um rotation, the gradient of grain rotation is also in-
duced, which causes additional energy together with the
moment at a contact point. In this way, the rotational
gradient theory can be reasonably applied to granular
material.

Finally, the coincidence between total grain rotation
and total continuum rotation breaks when the magnitude
of grain rotation exceeds around 45 degrees. This is quite
natural if we suppose applying a huge extent of simple
shear into granular medium. There is no limitation in
grain rotation, while the total continuum rotation cannot
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Fig. 17. Outline of DEM simple shear simulation (regular polygonal
grains: average shape is octagon) (Matsushima and Konagai, 2001)  Fig. 18. Relation between continuum rotations and grain rotations in
(a) initial configuration and (b) shear strain y=10.5 DEM simple shear simulation
(a) circular grains and (b) regular polygonal grains

exceed 90 degrees. Therefore, strictly speaking, both
rotations should be treated as incremental quantities, Such micromechanical effects have been extensively
continuum spin and granular spin. studied in relation to the internal length that may cor-
responds to the mean grain size. On the other hand, some
researches have focused on the effect of grain shape
CONCLUSION (Yoshida et al., 1994; Matsushima, 1997; Iwashita and
The relation between the grain rotation and the con- Oda, 2000). Such attempts are necessary to identify the
tinuum rotation during the shear deformation of granu- material parameters in higher-order constitutive equation
lar medium was studied experimentally and numerically.  as well as the classical one. The results obtained in this
Both results support the assumption in the rotational study will also be useful for such future study.
gradient theory; a particular case of the strain gradient
theory where the above two rotations are identical. The
physical interpretation of the rotational gradient theory ACKNOWLEDGMENT
with respect to granular medium is also presented. Authors gratefully acknowledge Mr. lidaka of the
In LAT experiment on slope failure, grain size effect University of Tsukuba for the preparation of the LAT
was also discussed together with the progressive failure experiment. The first author is grateful for invaluable
and the dilatancy behavior of the slope. Such behaviors  discussion on microstructured continuum with Prof.
are tightly related to the reason why non-classical theory = Chambon of Laboratoire 3S, Grenoble. This work was
is necessary in large deformation problem of granular supported in part by a grant-in-aid of Japan Society for
medium. the Promotion of Science (No. 13650535).
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