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ABSTRACT. A simple algorithm for discrete element modeling of complicated grain shapes is 
presented and evaluated in this paper. Each grain’s shape is assumed to be represented by 
combining several primitive elements (circles in 2-D and spheres in 3-D) suitable for Discrete 
Element simulation. The proposed dynamic optimization algorithm enables us to obtain the sizes 
and the locations of the primitive elements so that the best accuracy possible is attained in the 
modeling. Application of the 2-D Toyoura sand model into a DEM element test is presented and 
the effect of a grain’s shape on the macro behavior of a granular system is discussed. 
 
RÉSUMÉ. Un algorithme simple pour la modélisation par éléments distincts de grains de forme 
complexe est présenté et évalué dans cette communication. La forme de chaque grain est 
représentée par une combination de primitives (des circles en 2D et des sphères en 3D) adaptée 
à la modélisation par éléments distincts. L’algorithme d’optimisation dynamique proposé permet 
d’obtenir les tailles et la position des éléments de primitives de manière à obtenir la meilleure 
précision possible dans la modélisation. Une application 2D au sable de Toyoura est présentée, 
et on discute de l’influence de la forme d’un grain sur le comportement macroscopique du milieu 
granulaire. 
 
 
1. Introduction 
 
A rapid increase of computer abilities in the recent past has drastically extended the availability of 
Discrete Element Method (DEM). Recently, in the field of soil mechanics, some researchers 
attempted so-called ‘virtual’ element tests such as a tri-axial compression test with DEM 
(Thornton and Liu 2000, Muhlhaus, H.-B. et al. 2001). They dealt with a considerable number of 
3-D particles (5000 to 10000) to obtain more realistic simulation results. However, it is still difficult 
to compare such DEM results quantitatively with physical experimental results of real sand mainly 
because of the lack of adequate grain-shape modeling. Natural sand grains have very 
complicated shapes necessarily affect the macro behavior (stress-strain curve, dilatancy curve, 
etc.) of an element test specimen. It seems true to say that angular grains have much higher 
shear strengths than roundish grains, but the mechanism is still not clear and quantitative 
estimations have not been successfully made yet. 

In order to study this grain-shape effect, several researchers have conducted Discrete element 
simulations with non-circular (or non-spherical) particles. Rothenberg and Bathurst (1992) 
conducted a series of bi-axial test with elliptic elements of different aspect ratios and showed that 
the maximum shear strength was exhibited with a specimen composed of ellipses whose aspect 
ratio was around  0.8. Mirghasemi et al. (1997) dealt with polygonal particles in order to study the 
effect of confining pressure on peak shear strength, but grain-shape effects were not  disscussed 
in depth. Matsushima and Konagai (2001) simulated a series of simple shear tests with 2-D 
elliptic elements and regular polygonal elements to discuss the grain shape effect in detail. It was 
demonstrated in their study that regular polygonal elements exhibit larger rotational resistance at 
their contact points, which leads to higher shear strength. They also conducted grain shape 
analysis for four different sands, and suggested that the mechanism of grain-shape effect of real 
sands may be similar to that of regular polygonal elements. 

In relation to the rotational resistance at the contact points, Iwashita and Oda (1998) proposed 
a DEM with circular elements in which an additional rotational spring is assumed at each contact 
point. This is considered as a indirect but efficient approach to include the effect of grain shapes 
into DEM, though further study between rotational resistance and grain shape is needed.  
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In an attempt for a 3-D non-spherical element, Lin and Ng (1997) and Ng (1999) proposed the 
DEM with ellipsoidal elements and Ghaboussi and Barbosa (1990) formulated ployhedron DEM, but 
they didn’t discuss the connection to real grain shapes. 

Considering these circumstances, it appeared worth conducting discrete element simulation 
with grains whose shapes were directly modeled from real sand grains. This study deals with 
such direct grain-shape modeling by a combination of primitive circular or spherical elements. A 
newly developed algorithm enables us to find the optimum sizes and positions of primitive 
elements for describing a complicated grain shape. Its concept is quite simple, and is easily 
applicable not only in 2-D but also in 3-D modeling. Accuracy and convergence of this algorithm 
are discussed in detail in this paper. Then the adaptability of the modeled grains into DEM 
simulations was studied through an element test. Based on the simulation results, the grain-
shape effect in such granular materials as sands is then discussed. 
 
2. Dynamic optimization for grain shape modeling 
 
2.1. Basic algorithm 
 
The proposed algorithm is called dynamic optimization; because the optimized solution is 
obtained through a virtual time-marching scheme. First we assign the number of primitive 
elements used for the modeling, and set arbitrary initial sizes and locations. Usually the initial size 
is set to be sufficiently small in comparison with the size of the target grain and the initial locations 
are assigned inside the target grain. Then, we assume a kind of virtual force acting on the 
primitive elements. This force is an attraction from the surface of the target grain. The surface of 
the target grain is given as a set of discrete points, and the attraction directs from the centroid of 
the primitive element to each surface point (Figure 1(a)(b)). The magnitude of the attraction is 
proportional to the distance between the primitive element and the surface point.  

When plural primitive elements are adopted, it is assumed that the attraction of each surface 
point acts only on the element closest to the point (Figure 1 (c)). More exactly, the following value 
ijδ is checked for each element i : 

iijij rd −=δ   (1) 

 
 
 
 
 
 
 

(a)   (b)   (c) 
Figure 1  concept of a virtual force acting on the elements 

[0] Start 
[1] Input of the surface points of a target grain 
[2] Calculation of area (volume), gravity center, etc. of the grain 
[3] Input the calculation conditions (number of primitive elements, 
time increment, spring constant, damping coefficient, etc.) 
[4] Set the initial sizes and locations of the primitive elements 
[5] Iteration loop starts 
[6] Loop for each grain-surface point 
[7] Detection of the element closest to the surface point 
[8] Calculation of virtual force 
[9] go back to [6] up to the end of data point 
[10] Solve the virtual equation of motion for each element 
[11] Calculation of error index 
[12] If error index does not reach the threshold, go back to [5] 
[13] End 

Figure 2  Flow chart of the program 
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where ijd  is the distance between j -th surface point and the centroid of i -th element, and ir  is 
the radius of the element. Then the element which has the minimum ijδ  is chosen as the 
representative element of this surface point, and the following attraction is applied to the element: 

)( iijij rdkf −=   (2) 
where k  is a spring constant. The attraction is directed from the centroid of the element to the 
surface point when ijf  is positive. 

By summing all the attractions, each element moves and expands (or shrinks) according to a 
virtual equation of motion. By introducing an additional damping in the equation of motion, the 
motion of the elements is converged after some calculation steps. In this converged configuration, 
the equilibrium has been met in each element for both volumetric and translational components. 
This final configuration of the elements is then the optimum solution in this algorithm.  

The algorithm is summarized in a flow chart (Figure 2). 
 
2.2. 2-D modeling 
 
Figure 3(a)(b) show an example of the 2-D converging process with a single circular element. It is 
clear that the element approaches to the converged solution with some oscillation. It is necessary 
to set adequate parameters (spring constant and damping coefficient) for the rapid convergence. 
Figure 3 (c) shows that a unique solution is obtained wherever the initial position of the element is 
assigned (cross marks in the figure show the randomly-assigned initial positions). 

When plural primitive elements are adopted, however, the converged solution is not unique but 
is strongly influenced by the initial configuration. Figure 4 shows two different converged solutions 
that are obtained from 10 different initial configurations with two elements. To judge the accuracy 
of the converged solution, the following error index is introduced: 

 
 
 
 
 
 
 
 
 
 
 
 (a) converging process(1)           (b) converging process(2)          (c) unique solution with  
              various initial positions 

Figure 3  an example of the optimization with a single element 
 

 
 
 
 
 
 
 
 
 
 
 
 (a)                                                 (b) 
Figure 4  two solutions obtained with two elements         Figure 5  a solution with ten elements 
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where N  is the number of surface points ofthe target grain, eqR  is the radius of the circle whose 

area (or volume in 3D) is equivalent to the one of the target grain, jd  is the distance between the 
j -th surface point and the centroid of the element representing this surface point, and jr  is the 

radius of the element. 
Since it is difficult to find the theoretical optimum solution, we currently repeat a sufficient 

number of calculations with different initial positions, and the most accurate solution is chosen 
based on the error index. 

When the number of adopted elements is increased, another problem arises; some of the 
elements come fully inside another element and become inactive. To avoid the degradation of the 
solution by these inactive elements, it is effective to introduce an additional scheme that such 
elements are re-located around the most-inaccurate surface point. Figure 5 shows an example 
obtained with ten elements, which seems to attain sufficient accuracy of overall grain shape. It 
should be noted that this modeling cannot describe the small surface roughness of real sand 
grains. However, this surface-roughness effect may be incorporated into DEM simulations by 
changing the friction coefficient. 

Figure 6 shows the convergence with a different number of primitive elements. Convergence 
becomes worse with larger numbers of elements and the curves are jagged (not monotonic). This 
is due to the fact that the change of the elements’ configurations causes a change of the 
mathematical problem itself; the connection of virtual springs between the elements and the grain 
surface points are determined by the current configuration of the elements.  

Figure 7 shows the relation between the final error index and the number of the primitive 
elements. The final error index is determined as the value after a sufficient number of calculation 
steps. Certainly, a better result is attained with larger number of elements, but the increase of the 
number of elements leads to the increase of the computation time in DEM simulation. Therefore, 
an adequate number of elements for the modeling should be chosen taking account of both the 
accuracy and the computational efficiency in DEM simulation. 
 
2.3. 3-D modeling 
 
It is straightforward to apply the above algorithm into 3-D modeling. However the number of 
elements required to satisfy a certain accuracy becomes much larger. Figure 8 shows an example 
of 3-D grain modeling with 100 elements. The obtained error index is err=0.00962 which is 
comparable to that of 2-D modeling with 10 elements (err=0.00970), though the target grain 
shape is completely different. From a dimensional consideration, the accuracy with N elements in 
2D is same as that with N2 elements in 3D. According to Figure 6, the accuracy with smaller 
elements does not obey this rule, mainly due to the difference of the target grain shape, but the 
accuracy with a larger number of elements seems to be in good agreement with the rule. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6   convergence of the calculation  Figure 7  relation between error index and  
          the number of adopted elements 
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Therefore we can choose the number of primitive elements used for the representation of one 
grain based on Figure 6 
 
3. Application to Discrete Element Method 
 
3.1. 2-D Modeling of Toyoura sand 
 
Recent developments of digital microscopes enable us to easily obtain the shape of sand grains, 
and some research has been done on grain shape analysis of various sands using this 
technology (Yoshida 1993, Matsushima and Konagai 2001). However only 2-D images as shown 
in Figure 9 were dealt with, and a 3-D grain-shape detection system has not been established yet. 
In this study we also limit the discussion to 2-D modeling. 

Figure 9(a) shows a part of a grain shape catalog of Toyoura sand, a commonly-used sand in 
Japan. 50 grains are detected in this study and each grain was modeled with 10 circular elements. 
Size distribution of these grains is plotted in Figure 10. It seems to be reasonable in comparison 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) x-z plane   (b)  x-y plane   (d) y-z plane 
Figure 8 an example of 3-D modeling  

(top: original surface data, bottom: model with 100 spheres) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) original grain images  (b) grains modeled with ten circles 
Figure 9   2-D grain catalog of Toyoura sand 
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with that obtained by usual sieving process.  
The DEM program used in this study was developed by Matsushima (2001), and it allows 

combining a certain number of primitive elements in rigid way. In other words, the contact 
judgment and the calculation of contact forces are conducted for each primitive element, and the 
equation of motion is solved for each grain. It should be noted that the catalog of Toyoura sand 
model constructed in this study can also adapted to DEM, which allows combining some primitive 
elements with additional springs. 

DEM parameters used in the simulation are listed in Table 1. 
 
3.2. Numerical example 
 
A bi-axial test with rigid sidewalls was simulated. The number of grains was 1000, meaning that 
each 50 grains was duplicated 20 times and was randomly located. The initial specimen was 
2.97mm wide and 5.98mm high and the initial void ratio was set to 0.201 (dense). Both side walls 
were programmed to move so as to keep the total reaction force constant (5.98e6 g mm/s2). 
Since the height of the specimen was reduced due to loading, the confining pressure gradually 
changed (1.0kN/m at the initial state and 1.2kN/m at the final state with an axial strain of 16.7%). 

Figure 11 shows the snapshots of the specimen before and after axial compression. Figures 
12 and 13 show the evolution of the mobilized friction angle and the volumetric strain (dilatancy 
relation), respectively. In the figures the result by an equivalent circles model (whose volume 

 
 
      Table 1. DEM parameters used in this study 

density of grain 2.64 (g/cm2) 
spring constant (normal) 1.0e9 (g/s2) 
spring constant (shear) 2.5e8 (g/s2) 
damping coefficient (normal) 2.0e2 (g/s) 
damping coefficient (shear) 1.0e2 (g/s) 
friction coefficient 27 (deg.) 
time increment 5.0e-8 (s) 

 
 
 

Figure 10  size distribution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) before compression  (b) after compression (axial strain=16.7%) 
Figure 11  bi-axial test with 1000 Toyoura sand grains 
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distribution is exactly equal to the Toyoura sand model) is also plotted. It is clear that the internal 
friction angle in the Toyoura sand model is 5 to 6 degrees higher than that in the equivalent 
circles model. This mechanism can be explained as follows. Many Toyoura sand grains are in 
contact with each neighbor at not only single points but at two or more points, as shown in Figure 
13. In the figure the lines connecting the grains indicate the contact forces and the thicker lines 
show larger forces than average. These plural contact points allow a transmission of the moment 
between the contacting grains and causes the resistance of their relative rotations. This 
mechanism was pointed out by Matsushima and Konagai (2001), through a simulation with 
regular polygonal elements. 

The actual internal friction angle of dense Toyoura sand is around 50 degrees. Since the 
simulation presented here is 2-D, we cannot directly compare the numerical results with 
experimental ones.  
 
4. Conclusion 
 
A dynamic optimization algorithm for direct shape modeling of sand grains for the Discrete 
Element Method was developed and evaluated. It was found that the algorithm is valid from a 
relatively small number of primitive elements to large numbers of elements in both 2-D and 3-D 
modeling. For an accurate modeling with relatively large numbers of elements, the computation 
time becomes longer due to the convergence degradation that comes from the essential non-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12  evolution of mobilized friction angle Figure 13  evolution of volumetric strain 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14  granular columns formed in the compressed specimen 
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linearity of the problem. However it is not a problem in practical sense because once the catalog 
of the grains model is constructed it can be used directly in a usual DEM program. 

The accuracy of the modeling can be roughly estimated from the number of adopted elements 
in both 2-D and 3-D with a unified relation. 

Using the proposed algorithm, a 2-D grain shape catalog of Toyoura sand was prepared. The 
adaptability into DEM of the modeled grains was verified through the bi-axial element test. The 
high shear strength of the specimen obtained in comparison with the equivalent circles model was 
discussed in relation to the transmission of the moment among the plural contact points between 
the grains. 
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