個別要素法解析の現状と将来展望

Current and Future Perspectives for DEM Simulations in Geotechnical Engineering

松島亘志(まつしま たかし) 筑波大学 システム情報系 准教授 片桐 淳(かたぎり じゅん) (独)産業技術総合研究所 研究員

河 野 昭 子 (こうの あきこ) (公財)鉄道総合技術研究所 主任研究員

1. はじめに

個別要素法(Discrete Element Method, DEM)は、多数の固 体粒子の運動を、粒子ごとの並進および回転の運動方程式 に基づいて時刻歴に解き進める解析手法である^{1,2)}が、粒 子間の相互作用については、「接触している2つの固体粒 子の変形は、接触点近傍に限られる」という近似¹から、 接触反力と接触点変位の関係についてのモデルを用いる ところに特徴がある。地盤の連続体解析では、微小な地盤 の塊に対する応力とひずみの関係(構成モデル)を与える必 要があるが、個別要素法では、そのようなモデルは与えな い。応力とひずみは、十分な数の粒子を含んだ代表体積内 で、上述の粒子間接触モデルによって計算された粒子間力 と粒子間相対変位のそれぞれの体積平均を取ることによ って結果として求められるものとなる。

地盤材料の応力-ひずみ関係は、これまで多くの精緻な 実験で調べられてきたが^{4,5)}、ダイレタンシー、異方性、塑 性圧縮、液状化など、極めて複雑な応答を示すことが知ら れている。このような複雑な応答の原因が、「地盤が土粒 子の集まりである」ことに依っているのであれば、個別要 素法は、地盤材料の解析に適した手法であると言うことが できるだろう。実際、以降の章で述べるように、適切な粒 子モデルを用いれば、土の複雑な要素挙動を広汎に、しか もある程度定量的に再現できることが示されつつある。

一方、個別要素法を用いて盛土や堤防などの土構造物の 全体解析を行うことには、注意が必要である。実際の土構 造物は極めて多数の土粒子を含むが、この土粒子をそのま ま解析することは、現在の(あるいは近い将来の)コンピュ ータ性能から考えて現実的でない。従って、実際の土粒子 よりも相当大きな粒子モデルを用いて解析を行わざるを 得ないが、その場合には、いわゆる「粒子サイズ効果」が 現れてしまう。粒子サイズ効果は、解析上の問題というよ りは、たとえば模型実験で用いる土粒子が相似則を満たし ていない事で現れる影響のや、ロックフィルダムや鉄道 バラスト層といった、構造物サイズに対して構成粒子サイ ズが無視できない場合の変形抵抗の増加^{7,8)}など、粒状体 の物性として考えるのが妥当である。粒子サイズ効果は、 変形の局所化に伴って現れるもので、境界条件によって局 所化の程度は異なることから、厄介な問題である。実際の 土粒子より大きな個別要素を用いた解析では、この効果を きちんと理解して使う必要がある。

上述の点を踏まえて、以下では、土の要素挙動の再現と、 境界値問題の解析について、それぞれ具体例を通して個別 要素法解析の現状と課題についてまとめる。

個別要素法による土の要素挙動の観察

土の複雑な応力-ひずみ関係の微視的メカニズムを明ら かにするために、個別要素法は有効な手法である。個別要 素法では、実験と異なり、あらゆる微視的物理量が計算結 果として得られるため、複数の物理量の相互関係を検討し たり、他の因子の影響を排除して、特定の微視的メカニズ ム(例えば粒子破砕)が要素挙動に及ぼす影響について調 べることも可能となる。本章では、そのような検討のうち、 粒子形状の影響^{9,10}、および粘土粒子間に作用する付着力 の影響について検討した例¹¹)などを紹介する。

2.1 粒子形状の影響

DEM が岩盤崩落解析に初めて適用されたときは2次元 多角形要素が用いられたりが、その後、粒子数を増やした 解析を行うために、要素は計算負荷の小さい円形や球形が 多く用いられた¹³⁾。しかしながら、地盤工学の分野では、 円形・球形要素を用いた場合、粒子間摩擦係数をいくら大 きくしても、自然の砂のせん断強度には達しないことが認 識され、接触点に転がり摩擦を導入して、不規則形状の影 響を表現する方法が試みられた ^{13,14)}。一方で、計算機性能 の向上と共に、非円形・非球形要素も多く用いられるよう になってきている¹⁵⁾。特に、粒子形状を実際の材料から直 接モデル化すれば¹⁰、要素実験のフィッティングではな く、要素挙動を「定量的に予測」することが可能となる。 図-1 および2は不規則形状粒子(月面模擬砂, FJS-1¹⁷⁾)、お よび球形ガラスビーズについての安息角実験と DEM 解析 を比較したものである⁹。ここで、DEM の FJS-1 粒子は、 X線CTによって取得した3次元粒子形状を10個の球で モデル化したもの(10要素モデル)であるが、実材料の安息

¹ Hertz の弾性球接触理論³⁾ が基になる。

角を良く再現できている。

次に図-3~5 は、豊浦砂 DEM モデルの単純せん断試験 シミュレーション結果と、中空ねじりせん断試験(TSS test) の結果の比較を示している¹⁰⁾。ここでも、10 要素モデル で、3000 個程度の粒子数を用いれば、実験を、ある程度定 量的に再現できる事が示されている。なお、図-4 で見られ るせん断初期の応答の差異については、供試体の作成方法 が大きく影響していることがわかっている¹⁸。

なお、粒子形状効果についての理論的な検討は Matsushima and Chang (2010)¹⁹ などでなされている。

2.2 粒子破砕と粒度分布の影響

Cheng et al. (2003)²⁰⁾ や Nakata et al. (2005)²¹⁾ は、破砕性 粒状体の1次元圧縮挙動を DEM で再現し、いわゆる *e*-log *p* 関係と粒子破砕挙動の関係、粒子破砕における粒子内部 不均質性を DEM モデルで再現する重要性などを指摘して いる。また、Ueda et al. (2013)²²⁾ は、2次元粒状体の1次 元圧縮解析を行い、粒子形状が粒子の破砕形態に及ぼす影 響、破砕により粒度分布がフラクタル分布に近づいていく こと、また、近似楕円体としての粒子形状も、破砕により ある一定の分布に近づいていくことなどを示している。

一般に、粒度の広い粒状体は、大きな粒子の隙間に小さ な粒子が入り込む効果で、取り得る間隙比が小さくなる²³)。 破砕性粒状体の圧縮特性は、この粒度変化が重要な役割を 担っていると考えられ、そのようなミクロな観点からのモ デルも提案されてきている²⁴⁾。今後は、DEMによる結果 をベースにした粒度分布の発展則の構築や、それを含めた 破砕性粒状体の圧縮モデルなどの発展が期待される。一方 で、良配合粒状体の解析は多数の小粒子を扱わなければな らないこと、接触判定の効率化がしにくいこと、などから 計算機性能の向上は欠かせない要件となる。

2.3 粒子間付着力の影響

粒子サイズが小さくなると、粒子に作用する重力に比べ て、粒子間に作用する様々な付着力(ファンデルワールス (vdW)引力や液架橋付着力、静電気力など)が卓越するため、 巨視的にも粘着性が現れ、表面でさらさらと流れなくなる。 また、空隙の大きい微視構造が形成されるようになり、載 荷により大きく圧縮する。前節で述べた粒子破砕によって 数 10 ミクロン以下の粒子が多く形成されると、この付着 力効果で逆に間隙比が大きくなる。また、粘土地盤が大き な圧縮性を示すのも、粒子間付着力による大きな間隙の存 在が主原因と考えられる。

粘土粒子の相互作用力は、コロイド科学の分野で多くの 研究があり²⁵⁾、粒子の凝集挙動などが DEM で計算され ている^{26,27)}。一方、凝集した粘土地盤の圧縮特性などの解 析も徐々に行われてきている^{28,11)}。図-6 では、2次元の粘 土粒子堆積構造が載荷によって圧縮する様子を示してい る。この間隙サイズの頻度分布の変化を調べると、大きい 空隙からつぶれていく様子が明らかとなった。図-7 では、 粒子間力特性を変化させた4つのケースでの *e*-log *p* 曲線 を示しているが、圧密降伏応力に達すると急激に圧縮が進

図-2 安息角実験(上)および DEM 解析結果(左:球形ガラスビ ーズ、右:FJS-1)⁹⁾

図・3 単純せん断試験シミュレーションにおける変形性状(側 面は周期境界、上下面の白粒子は剛接)¹⁰⁾

図-5 内部摩擦角に及ぼす初期間隙比、粒子モデル化要素 数、試験体粒子数の影響¹⁰⁾

図-6 2次元粘土堆積物の1次元圧縮試験シミュレーション 11)

行する様子が示されている。

なお、ここでは vdW 引力および拡散二重層反力のみ考 えているが、粒子間付着力としては、上述のように液架橋 付着力、静電気力などもある。これらの力は、粒子同士が 接触していなくても作用するもので、より多くの粒子同士 の接触判定が必要となるため、詳細な3次元計算などでは、 やはりコンピュータ性能の向上が必須要件となる。

3. 鉄道バラスト軌道の沈下挙動の検討²⁹⁾

前述のように、個別要素法を実務での境界値問題の解析 に用いる際には、粒子サイズ効果を考慮しなければならな い。逆に、この粒子サイズ効果を利用している構造物に関 しては、DEM でその効果を検証することが可能となる。

ここでは、鉄道バラスト軌道の沈下挙動の検討に DEM を利用した例を紹介する²⁹⁾。用いたモデルを図-8 に示す。 道床バラスト層の幅(レール方向)、奥行き(レールに直交す る方向)、深さはそれぞれ 100cm, 30cm, 42cm で,まくらぎ 底面の深さは 22cm、まくらぎ形状は標準軌用 3H まくら ぎを用いている。バラスト(砕石)粒子は、実形状をレーザ ースキャナで取得したものを 10 個の球でモデル化した。 DEM パラメータは河野³⁰⁾に示す方法で決定した。

列車走行時にまくらぎに作用する標準的な力を元に、最 小荷重 1kN、最大荷重 10kN、載荷周波数 30Hz として 500 回の載荷を行った。その結果、得られた載荷回数と沈下量 の関係を図-9に示す。これを見ると、載荷回数100回まで と、それ以降の沈下速度の傾向が異なっていることがわか る。これは、実規模実験でも観測されており^{31,32)}、初期沈 下過程および漸進沈下過程と呼ばれている。この原因とし て、初期沈下過程ではバラスト粒子間の空隙の減少、漸進 沈下過程では側方流動が卓越すると考えられている。 DEM 結果において、バラスト粒子の移動形態を、初期沈 下過程および漸進沈下過程で調べてみると図-10のように なる。すなわち、初期沈下過程では、通常の浅い基礎の支 持力解析で仮定する円弧滑りのような変形モードが見ら れる一方、漸進沈下過程では、まくらぎ直下のバラストは 余り動かず、まくらぎ端部付近のバラストが外側にはらみ だしている。更にこの変形モードからまくらぎ下のバラス ト層の体積ひずみを求めてみると、初期沈下過程では圧縮 傾向であるのに対して、漸進沈下過程ではやや膨張傾向が 見られた。この解釈としては、漸進沈下過程では、まくら ぎ下面とバラスト層底面に挟まれたバラスト粒子群は高

図-7 2 次元粘土 DEM によって得られた *e*log *p* 曲線. case 1 ~4 では、粒子間の vdW 力のパラメータが異なる¹¹⁾

図-8 鉄道バラスト軌道 DEM モデル

図-9 載荷回数と沈下量の関係 33)

さの低い試験体の平面ひずみ圧縮状態に近く、圧縮ととも に層全体が側方に広がっている状態が考えられる。この側 方への押し出しによって、まくらぎより外側のバラストが 徐々に表面に押し出される。このような変形メカニズムの 変化が、まくらぎの沈下速度に影響している可能性がある。

まとめと将来展望

以上の例で見られるように、DEM 解析は要素挙動や境 界値問題における、地盤材料の複雑挙動、特に粒子性に起 因する諸現象に対して、定性的のみならず定量的にも再現 可能な手法となってきており、これらの現象のよりよい理 解や予測に役立つツールとして、単に研究目的だけでなく、 実務応用の場での重要性を増してきている。

一方で、計算機性能の制約により、現状で DEM を直接 適用できる問題は限られている。良配合材料や粒子破砕、 粘土などの解析では未だに要素数や計算時間の制約が大 きい。また、本稿では述べなかったが、間隙水や間隙空気 を合わせて解析するためには、更に多くの計算負荷がかか る。これが実際の土構造物の解析となればなおさらである。

DEM は、いわゆる要素還元主義と捉えられがちである が、単に「解析ができた」というだけでは、本当の意味で 「理解した」ことにはならない。DEM 解析の結果から、

マクロな法則をモデル化することがすなわち「理解」であ る。したがって、FEM のようなマクロ解析と DEM のよう なミクロ解析は今後も共存していくべきものである。

なお、DEM も含めた不連続体解析についての今後の展 望については、地盤工学会のアカデミックロードマップ³³⁾ も是非ご参照いただきたい。

参考文献

- Cundall, P.A.: A computer model for simulating progressive, largescale movements in blocky rock systems. Symp. ISRM Proc. 2, 129– 136 (1971)
- 2) 松島亘志: DEM, 技術手帳, 地盤工学会誌 58(1), 116-117
- Johnson, K. L.: Contact mechanics, Cambridge University Press (1985).
- Tatsuoka, F., Deformation characteristics of soils and rocks from field and laboratory tests, Proc. of 9th Asian Regional Conf. on SMFE 2, 101-170, 1992
- Ishihara, K. "Thirty-third Rankine Lecture: Liquefaction and flow failure during earthquakes." Geotechnique 43, 349-416, 1993.
- 6) 地盤の破壊とひずみの局所化,地盤の破壊とひずみの局所化 に関する研究委員会編、土質工学会、1994.
- 7) Konagai, K. and Matsushima, T., Key Parameters Governing Dynamic Granular Slope Stability, Journal of Dam Engineering (ダム工学), 7(1), 27-31, 1997.
- Matsushima, T., Saomoto, H., Tsubokawa, Y., Yamada, Y.: Grain Rotation versus Continuum Rotation during Shear Deformation of Granular Assembly, Soils & Foundations, 43(4), 95-106, 2003.
- Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T., 3-D Shape Characterization and Image-based DEM simulation of Lunar soil simulant, FJS-1, Journal of Aerospace Engineering, ASCE, 22(1), 15-23, 2009.
- 10) Katagiri, J., Matsushima, T., Yamada, Y., Simple shear simulation of 3D irregularly-shaped particles by image-based DEM, Granular Matter, 12(5), 491-497, 2010.
- Suzuki, A., Matsushima, T.: Meso-scale structural characteristics of clay deposit studied by 2D Discrete element method, IS-Cambridge 2014 (accepted).
- 12) 例えば、Cundall P.A., Strack O.D.L., Géotechnique, 29(1), 47–65, 1979; Walton, O.R., Braun, R.L., Acta Mechanica, 63, 73-86, 1986; Thornton, C., Barnes, D.J., Acta Mechanica, 64, 45-61, 1986など
- Sakaguchi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 7, 1949–1963 (1993)
- Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. Powder Technol. 109, 192–205 (2000)
- 15) 文献 10)の参考文献リストなどを参照

図-10 粒子の移動形態(上:初期沈下過程、下:漸進沈下過程³³⁾

- 16) Matsushima, T., Saomoto, H.: Discrete element modeling for irregularly-shaped sand grains. In: Mestat, P. (ed.) Numerical methods in geotechnical engineering, pp. 239–246. Presses de l'ENPC/LCPC, Paris (2002)
- 17) Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K., Properties of Lunar Soil Simulant Manufactured in Japan, Space98, ASCE,462-468, 1998.
- 18) 片桐 淳, 松島 亘志, 山田 恭央, DEM による試料作製方法が 粒状体のせん断挙動に及ぼす影響の定量的評価, 土木学会論 文集 A2(応用力学), 68(1), 67-77, 2012.
- Matsushima, T., Chang, C.S., Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies, Granular Matter, 13, 269–276, 2011.
- 20) Cheng, Y.P., Nakata, Y., Bolton, M.D., Geotechnique, 53, 7, 633-641, 2003
- 21) Nakata, Y., Cheng, Y.P., Bolton, M.D., Powders and Grains 2005, 1387-1391.
- 22) Ueda, T., Matsushima, T., Yamada, Y., DEM simulation on the onedimensional compression behavior of various shaped crushable granular materials, Granular Matter 15(5), 675-684, 2013.
- 23) Yerazunis, S., Bartlett, J.W., Nissan, A.H. (1962) "Packing of binary mixtures of spheres and irregular particles", Nature, 195, 33-35.
- 24) McDowell, G. R., M. D. Bolton, and D. Robertson. "The fractal crushing of granular materials." Journal of the Mechanics and Physics of Solids 44.12 (1996): 2079-2101.
- 25) 例えば、Israelachvili J N (1992) Intermolecular and surface forces. (Academic Press, London).
- 26) Yang, R. Y., R. P. Zou, and A. B. Yu. "Computer simulation of the packing of fine particles." Physical Review E 62.3 (2000): 3900.
- 27) Peng, Zhengbiao, Elham Doroodchi, and Geoffrey Evans. "DEM simulation of aggregation of suspended nanopar-ticles." Powder Technology 204.1 (2010): 91-102.
- 28) Anandarajah, A. "On influence of fabric anisotropy on the stressstrain behavior of clays." Computers and ge-otechnics 27.1 (2000): 1-17.
- 29)河野昭子,松島亘志: DEM を用いたバラスト層沈下過程の微 視力学的観察,鉄道工学シンポジウム論文集, 18, 235-240, 2014.
- 30) 河野昭子:普通継目部付近の軌道弾性化前後の道床沈下に関 する解析的検討,鉄道工学論文集,No17, pp1-8,2013
- 31) 佐藤裕:繰返荷重による道床沈下の実験,鉄道技術研究報告, No65, pp13-18, 1959.
- 32) 名村明,石川達也ほか:有道床軌道の道床沈下の定量化に関 する基礎的検討,鉄道総研報告,vol7, No10,pp47-54,1993.
- 33) <u>https://www.jiban.or.jp/jgs_bbs/thread.php?no=4</u>

(原稿受理 2014.x.x)