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Abstract 

 
     Fiber-reinforced cementitious composite (FRCC) is cementitious material reinforced with short 

discrete fibers showing ductile behavior of composite, especially in tensile and bending field. The main 

advantage of FRCC lies on the controlling of crack width by bridging effect of fibers across crack. FRCC 

is generally utilized with steel reinforcing rebars in actual structures similarly as conventional concrete 

structures, hence, it is essential to evaluate crack width considering both fiber bridging effect and bond 

interaction between FRCC and rebar.  

This study aims to evaluate crack width in steel-reinforced FRCC members for the practical 

structures’ design. The theoretical calculation formula to predict crack width in steel-reinforced FRCC 

was led by solving the force equilibrium and compatibility conditions between FRCC and reinforcing 

bar considering bond interaction, fiber bridging effect and condition of crack occurrence. The steel strain 

– crack width relationship was given by a simple formula using bond constitutive law and fiber bridging 

law in addition to the material parameters of FRCC and rebar. 

     Uniaxial tension test was conducted for steel-reinforced FRCC prism specimens using aramid and PVA 

fibers to measure crack width experimentally. The test parameters were cross-sectional size of prism, fiber 

types and fiber volume fraction of FRCC. After that, theoretical curves were calculated by using the proposed 

formula and compared with the test results. The theoretical curves showed a good adaptability to evaluate 

crack width in each test parameter. According to the evaluation results using theoretical curves, crack width 

was smaller in PVA-FRCC by comparing with aramid-FRCC.  

     Parametric study of theoretical curves was conducted using the models of bridging laws for 4 types of 

fibers. In addition to aramid and PVA fibers used in the uniaxial tension test, PP and steel fibers were also 

subjected to the calculation. The crack width at the same steel strain became smaller in the order of PP, aramid, 

PVA and steel fiber, which was the same order that the initial slope of the bridging laws became larger. 
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Chapter 1 Introduction 
 

1.1  Research Background 

1.1.1 Fiber-Reinforced Cementitious Composites (FRCC) 

 

Fiber-reinforced cementitious composite (FRCC) is cementitious material mixed with short 

discrete fibers into cement matrix to improve brittle behavior of composites especially in tensile and 

bending field. FRCC shows high ductility because of fiber bridging through cracks and control the crack 

opening as shown in Figure 1.1(a). FRCC has been also expected to bring high durability to reinforced 

concrete structures by its small opening cracks that prohibit the penetrations of aggressive attacks to 

deteriorate the internal reinforcing rebars and FRCC itself.  

In past several decades, various types of FRCCs have been introduced and studied by lots of 

researchers. Steel fibers or polymeric fibers such as polyethylene (PE), polyvinyl alcohol (PVA), and 

polypropylene (PP) fibers have been utilized in FRCCs. While steel fiber-reinforced concrete (SFRC) 

commonly shows tension-softening behavior after initial cracking, FRCCs which are recently developed 

and studied show much higher ductility. FRCC showing a deflection hardening behavior under bending 

condition is defined as ductile fiber-reinforced cementitious composites (DFRCC) [1], while FRCC 

showing pseudo-strain hardening behavior under the uniaxial tension is defined as strain hardening 

cementitious composites (SHCC) [2]. In addition, DFRCC and SHCC show multiple cracking behavior 

as shown in Figure 1.1(b). The high ductility of these materials is achieved by the bridging effect of 

individual fibers in the matrix. In DFRCC and SHCC, polymeric fibers are commonly used rather than 

steel fiber. Engineered cementitious composites (ECC) [3], a class of cementitious materials typically 

reinforced with PE or PVA fibers, are one of the examples of SHCC materials showing high tensile strain 

hardening ability. Actual applications have been reported using them for beams, walls, decks and slabs, 

tunnel linings, concrete substrate retrofitting materials, etc. It has been expected to expand the use of 

these FRCCs with additional values for resilient and sustainable structures. 

 

     
     (a)    (b) 

Figure 1.1 FRCC under bending condition:  

(a) Crack bridging through crack; (b) Multiple cracking behavior 
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1.1.2 Crack Width Evaluation of FRCC (Fiber Bridging Law) 

 

It’s no exaggeration to say that the advantage of FRCC lies on the controlling of crack width by 

bridging effect of fibers across the crack. The tensile stress – crack width relationships (hereafter, called 

bridging law) can feature the crack width and crack opening behavior of FRCC itself and have been 

studied by many researchers. In general, bridging law of FRCC can be directly obtained from a uniaxial 

tension test [4-5], or alternatively, indirectly from a prism bending test [6]. However, in SHCC, it is 

difficult to measure the crack opening of single crack because of the multiple cracking behavior. To solve 

this problem, Pereira et al. have proposed the unique testing method using 0.5mm thick notched specimen 

[7] and Yu et al. have proposed the high-precision measuring method of crack opening using Digital 

Image Processing [8].  

On the other hand, the micromechanical modeling of bridging law of steel and PP fiber-reinforced 

concrete was first introduced by Li et al. [9]. Tensile stress can be given by the function of crack opening 

that is featured by the slip-out behavior of the individual fibers considering the effect of the inclined angle 

and probability density function for fiber dispersion and orientation. Especially in SFRC, bridging law 

has been studied theoretically by some researchers (e.g. [10]). Furthermore, Yang et al. have updated the 

micromechanical bridging law model for PVA-ECC by including strain-hardening behavior [11]. 

Kanakubo et al. have also studied bridging law for PVA-FRCC [12] and aramid-FRCC [13]. The both 

calculated bridging laws showed good agreements with the results of uniaxial tension test. In addition, 

the calculated bridging law of PVA-FRCC has been expressed by tri-linear model by Ozu et al. [14]. The 

characteristics points of the model have been given by the function of fiber orientation intensity. Since 

the bridging performance is varied by the fiber orientation, the model makes it easier to evaluate crack 

width in various types of FRCC members. 

  



 

－8－ 
 

1.1.3 Crack Width Evaluation of Steel Reinforced FRCC members 

 

FRCC is generally utilized with steel reinforcing rebars in actual structures similarly as 

conventional concrete structures. As well known, crack width in conventional concrete structures is 

affected not only by the characteristics of concrete but also by reinforcement ratio and interaction between 

concrete and rebars. For conventional concrete, Kanakubo et al. have proposed a crack width prediction 

method led by calculation of bond interactions [15]. The crack width is expressed by a simple function 

of dimensions of concrete prism and rebar, bond stiffness, tensile strength of concrete, and strain of rebar.  

For FRCC, in fact, some researchers have conducted uniaxial tension test of steel-reinforced FRCC 

prisms and evaluated cracking behavior [16-18]. Although the crack width of FRCC itself can be obtained 

through bridging law, it is considered that crack width in steel-reinforced FRCC member is also affected 

by the interaction between rebars as shown in Figure 1.2. Some researchers have studied theoretical 

calculations of crack width in FRCC with conventional reinforcement considering both the interaction of 

steel deformed rebar and fiber bridging effect at cracks [19-21]. Sunaga et al. have also conducted bond 

analysis for steel-reinforced FRCC prism considering fiber bridging effect and evaluated crack opening 

behavior [22]. However, these methodologies are complicated and require convergence calculations or 

numerical analyses to solve. It is quite convenience in the practical structures’ design to calculate crack 

width by a simple formula in which the crack width is expressed using the stress or strain of rebars.  

 

 
Figure 1.2 Schematic drawing of uniaxial tension test for steel-reinforced FRCC 
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1.2  Research Objective 

 

The main objective of this study is to evaluate crack width in steel-reinforced FRCC members for 

the practical structures’ design. To achieve this goal, a simple evaluation method of crack width in steel-

reinforced FRCC is derived by theoretical calculation of bond interactions between steel deformed rebar 

and FRCC, considering bridging effect of fibers at crack. Uniaxial tension test is conducted for steel-

reinforced FRCC prism specimens with slits and crack width is measured experimentally to verify the 

adaptability of proposed evaluation method. 
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Chapter 2 Theoretical Solution of Crack Width 

Prediction 
 

2.1  Introduction 

 

In the previous study [15], theoretical solution of crack width in steel-reinforced concrete member 

have been obtained based on the equilibrium and compatibility conditions considering the bond 

interaction between concrete and rebar. The crack width is given by the function of the strain of rebar. In 

this chapter, same theoretical procedure is also conducted in streel reinforced FRCC member involving 

the bridging effect of fibers at crack. 
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2.2  Theoretical Solution of Crack Width Prediction 

 

The relationship between strain of reinforcing bar and crack width is obtained from the equilibrium 

of axial forces and compatibility conditions in infinitesimal element of reinforced FRCC. 

Figure 2.1 shows the infinitesimal element of reinforced FRCC under tensile condition. Where, dx 

is length of the infinitesimal element, Psx is tensile load of rebar, dPsx is increment of tensile load of rebar 

in dx, τx is bond stress, sx is slip and dsx is increment of slip in dx. Eq.(1) gives the definition of bond stress 

which is obtained from the force equilibrium of rebar in axial direction. 

𝑑𝑃௦௫

𝑑𝑥
= 𝜏௫ ∙ 𝜑௦ (1) 

where φs is perimeter of rebar. Assuming that the rebar behaves in elastic manner, tensile force of rebar 

is expressed by strain as Eq.(2) 

𝑑𝜀௦௫

𝑑𝑥
=

𝜑௦

𝐸௦𝐴௦
∙ 𝜏௫ (2) 

where, εsx is strain of rebar, Es is elastic modulus of rebar, and As is cross-sectional area of rebar. Since 

the slip is defined as difference of deformation between rebar and surrounding FRCC, Eq.(3) is obtained 

from compatibility condition in the infinitesimal element. 

𝑑𝑠௫

𝑑𝑥
= 𝜀௦௫ − 𝜀௖௫ (3) 

where εcx is strain of FRCC.  

 

 
Figure 2.1 Infinitesimal element of reinforced FRCC under tensile condition 

 

A reinforced FRCC prism which is subjected to uniaxial tensile load is shown in Figure 2.2. Cracks 

occur in the prism by increasing the tensile load at loaded end, Ps(LOAD). Uncracked region between two 

cracks is focused and x-axis is defined in axial direction of the prism as the origin positions at the center 

of the uncracked region (x = 0). The half-length of the uncracked region is defined as l so that the crack 

locates at x = l. Psx and Pcx represent tensile forces of rebar and that of FRCC at arbitrary position in the 

uncracked region, x, respectively. At the crack in reinforced FRCC, tensile force is transferred not only 

by the rebar, Psl, but also by the bridging of fibers, Pbr. Eq.(4) gives the equilibrium condition of axial 

forces. Eq.(4) leads Eq.(5) assuming that the rebar and FRCC in the uncracked region remains in elastic.  
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𝑃௦௫ + 𝑃௖௫ = 𝑃௦௟ + 𝑃௕௥ ൫= 𝑃௦(௅ை஺஽)൯ (4) 

𝑛𝑝𝜀௦௫ + 𝜀௖௫ = 𝑛𝑝𝜀௦௟ +
1

𝐸௖
𝜎௕௥ ൫= 𝑛𝑝𝜀௦(௅ை஺஽)൯ (5) 

where, 

σbr : fiber bridging stress at crack (=Pbr/Ac), 

εsl : strain of rebar at crack, 

εs(LOAD) : strain of rebar at loaded end, 

n : ratio of elastic modulus (=Es/Ec), 

p : reinforcement ratio (=As/Ac), 

Es : elastic modulus of rebar, 

Ec : elastic modulus of FRCC, 

As : cross-sectional area of rebar, 

Ac : cross-sectional area of FRCC. 

 

 
Figure 2.2 Cracked reinforced FRCC prism in tension 

 

Substituting Eq.(5) for Eq.(3), Eq.(6) is obtained. Eq.(2) and Eq.(6) lead Eq.(7). 

𝑑𝑠௫

𝑑𝑥
= (1 + 𝑛𝑝) ∙ 𝜀௦௫ − 𝑛𝑝 ∙ 𝜀௦௟ −

1

𝐸௖
𝜎௕௥ (6) 

𝑑𝜀௦௫

𝑑𝑠௫
=

𝜑௦

𝐸௦𝐴௦
∙

𝜏௫

(1 + 𝑛𝑝) ∙ 𝜀௦௫ − 𝑛𝑝 ∙ 𝜀௦௟ −
1
𝐸௖

𝜎௕௥
(7) 

Integration of Eq.(7) from the center (x = 0) to crack position (x = l) is expressed by Eq.(8). 

න {(1 + 𝑛𝑝) ∙ 𝜀௦௫ − 𝑛𝑝 ∙ 𝜀௦௟ −
1

𝐸௖
𝜎௕௥

ఌೞ೗

ఌೞబ

}𝑑𝜀௦௫ = න
𝜑௦

𝐸௦𝐴௦
∙ 𝜏௫

௦೗

௦బ

𝑑𝑠௫ (8) 

where, 

εs0 : strain of rebar at x = 0, 

s0 : slip at x = 0, 

sl  : slip at x = l. 

Slip at x = 0, i.e., relative displacement between rebar and FRCC at the center of uncracked region can 

be assumed to be zero (s0 = 0) because of the symmetric condition. Integral calculus of Eq.(8) gives Eq.(9). 

1 + 𝑛𝑝

2
(𝜀௦௟

ଶ − 𝜀௦଴
ଶ) − ൬𝑛𝑝 ∙ 𝜀௦௟ +

1

𝐸௖
𝜎௕௥൰ (𝜀௦௟ − 𝜀௦଴) =

𝜑௦

𝐸௦𝐴௦
න 𝜏௫

௦೗

଴

𝑑𝑠௫ (9) 
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Eq.(9) gives the fundamental relationships between strains of rebar (εs0 and εsl) and slip at crack (sl). To 

achieve the goal of this study, it is convenience that the slip at crack can be expressed only by the strain 

of rebar at crack. An additional condition is introduced to eliminate the term of εs0. 

Tensile stress in FRCC becomes the largest at the center (x = 0) in uncracked region due to 

transmitted stress from rebar via bond stress. When tensile force of rebar increases, a new crack in FRCC 

is generated at the center of uncracked region resulting that the uncracked region is separated into two 

parts. The slip at crack which locates the end of uncracked region shows largest value just at the generation 

of the new crack. This condition means that the slip at crack is maximized when tensile stress in FRCC 

at the center reaches its cracking strength. This condition leads Eq.(10), where σcr is cracking strength of 

FRCC. Eq.(10) expresses that tensile strength at cracking in FRCC has the equilibrium with the bridging 

force at crack and the increment force by bond stress. 

𝜎௖௥𝐴௖ = 𝜑௦ ∙ න 𝜏௫

௟

଴

𝑑𝑥 + 𝜎௕௥𝐴௖  (10) 

Substituting Eq.(2) for Eq.(10), Eq.(11) is derived. Eq.(11) is calculated as Eq.(12). 

𝜎௖௥𝐴௖ = 𝐸௦𝐴௦ න
𝑑𝜀௦௫

𝑑𝑥

௟

଴

𝑑𝑥 + 𝜎௕௥𝐴௖ = 𝐸௦𝐴௦ න 𝑑𝜀௦௫

ఌೞ೗

ఌೞబ

+ 𝜎௕௥𝐴௖  (11) 

𝜎௖௥𝐴௖ = 𝐸௦𝐴௦ ∙ (𝜀௦௟ − 𝜀௦଴) + 𝜎௕௥𝐴௖  (12) 

Substituting Eq.(12) for Eq.(9), strain of rebar at crack position, εsl, is given by Eq.(13). 

𝜀௦௟ =
𝜑௦

𝐴௖(𝜎௖௥ − 𝜎௕௥)
න 𝜏௫

௦೗

଴

𝑑𝑠௫ +
1

𝐸௖
𝜎௕௥ +

1 + 𝑛𝑝

2𝑛𝑝𝐸௖

(𝜎௖௥ − 𝜎௕௥) (13) 

Eq.(13) expresses the relationship between strain of rebar and slip at crack position when a new crack 

generates. Since crack width of FRCC can be considered to involve the slips from the both sides of 

uncracked regions, it can be assumed that the slip at the crack position gives half of crack width. So, 

Eq.(13) gives the relationship between strain of rebar at crack position and crack width which has the 

possibility to become the maximum.  

Eq.(13) is adaptable for the materials in elastic manner in tension and with any relations between 

bond stress and slip. However, bond stress should be given by function of slip to solve Eq.(13). In this 

study, since the target range of slip (half of crack width) is enough small, bond stress versus slip relations 

is assumed to be given by elastic model. This assumption also helps to obtain mathematical solution by 

easy form for the practical use. The model is defined by bond stiffness, kbo, as given in Eq.(14). 

𝜏௫ = 𝑘௕௢ ∙ 𝑠௫  (14) 

Using Eq.(14), integral calculus for bond stress in Eq.(13) is derived as Eq.(15). 

න 𝜏௫

௦೗

଴

𝑑𝑠௫ =
1

2
𝑘௕௢ ∙ 𝑠௦௟

ଶ (15) 

Substituting Eq.(15) for Eq.(13), and assuming that crack width, wcr, is equal to two times slip at crack 

position, Eq.(16) is derived. 

𝜀௦௟ =
𝑘௕௢𝜑௦

8𝐴௖(𝜎௖௥ − 𝜎௕௥)
𝑤௖௥

ଶ +
1

𝐸௖
𝜎௕௥ +

1 + 𝑛𝑝

2𝑛𝑝𝐸௖

(𝜎௖௥ − 𝜎௕௥) (16) 
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It can be considered that fiber bridging stress, σbr, has also relations with crack width. The crack bridging 

stress of fibers in FRCC, σbr, is given by the fiber bridging law, i.e., the function of crack width, wcr. 

Therefore, Eq. (16) can be expressed as follows. 

𝜀௦௟ =
𝑘௕௢𝜑௦

8𝐴௖{𝜎௖௥ − 𝜎௕௥(𝑤௖௥)}
𝑤௖௥

ଶ +
1

𝐸௖
𝜎௕௥(𝑤௖௥) +

1 + 𝑛𝑝

2𝑛𝑝𝐸௖

{𝜎௖௥ − 𝜎௕௥(𝑤௖௥)} (17) 

Eq.(17) gives the relationship between strain of rebar at crack position and crack width when a new crack 

generates at the center of uncracked region. The crack width given by this relationship is corresponding 

to the maximum value for the following reasons. 

Figure 2.3 shows the schematic drawings of rebar strain – crack width relationship expressed by 

Eq.(17). The dotted lines in Figure 2.3 shows the examples of crack opening behavior of a certain crack. 

When the crack width reaches to the theoretical value with increasing of steel strain, new crack generates 

at the center of uncracked region. That is because this formula is led by using condition that tensile stress 

at the center of uncracked FRCC reaches to the cracking strength. This phenomenon causes the increasing 

of the number of cracks, hence, the crack width of each crack decreases because crack width is given as 

total deformation of specimen divided by the number of cracks. For this reason, crack opening of a certain 

crack does not exceed the theoretical value. Therefore, it can be said that this formula gives the possible 

maximum crack width at arbitrary strain of rebar. As the feature of this formula, crack spacing (=two 

times bond length) is not required for the calculation. 

 

 
Figure 2.3 Rebar strain – crack width relationship expressed by Eq.(17) 

 

Here, to compare the calculations by Eq.(17) with the test results, equilibrium of the axial force 

between crack position and loaded end is considered as previously shown in Figure 2.2. As seen in 

Eq.(18), the summation of tensile force of steel rebar at crack position, Psl, and fiber bridging force, Pbr, 

is equal to the tensile force of steel rebar at loaded end, Ps(LOAD). Note that, Ps(LOAD) is corresponding to 

the test load of uniaxial tension test. 

𝑃௦௟ + 𝑃௕௥ = 𝑃௦(௅ை஺஽) (18) 

In the case of conventional concrete, since the fiber bridging effect at cracks does not exist and Pbr is 

equal to zero, tensile force of rebar at loaded end, Ps(LOAD), is the same as that at crack position, Psl. On 
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the other hand, in the case of FRCC, tensile force of rebar at crack, Psl, is smaller than that at loaded end, 

Ps(LOAD), because of the bridging effect of fibers, Pbr. The relationship between the forces at crack and at 

loaded end is expressed as Eq.(19) by using stain of rebar at crack position, εsl, at loaded end, εs(LOAD), and 

fiber bridging stress, σbr. 

𝜀௦௟ +
1

𝑛𝑝𝐸௖
𝜎௕௥ = 𝜀௦(௅ை஺஽) (19) 

While the steel strain obtained from uniaxial tension test is corresponding to εs(LOAD), the steel strain given 

by Eq.(17) is corresponding to εsl. Therefore, the test results cannot be directly compared with the 

theoretical results obtained from Eq.(17). However, it is difficult to measure the steel strain at crack 

position in uniaxial tension test. To solve this problem, theoretical formula which is expressed by εs(LOAD) 

instead of εsl is also derived as Eq.(20) by substituting Eq.(17) to Eq.(19). 

𝜀௦(௅ை஺஽) =
𝑘௕௢𝜑௦

8𝐴௖{𝜎௖௥ − 𝜎௕௥(𝑤௖௥)}
𝑤௖௥

ଶ +
1 + 𝑛𝑝

2𝑛𝑝𝐸௖

{𝜎௖௥ + 𝜎௕௥(𝑤௖௥)} (20) 

Eq.(20) gives the relationship between strain of rebar at loaded end and crack width when a new crack 

generates. In the next chapter, theoretical results given by Eq.(20) is compared with the test results 

obtained in Chapter 3 and the adaptability of this theoretical solution is confirmed. 

 

  



 

－16－ 
 

Chapter 3 Uniaxial Tension Test 
 

3.1  Introduction 

 

In this chapter, uniaxial tension test is conducted for steel-reinforced FRCC prism specimens using 

aramid and PVA fibers to measure the crack width experimentally. The crack opening behavior is 

compared each other through the steel strain – crack width relationships obtained from the loading test. 
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3.2  Experiment Outline 

3.2.1 Specimens 

 

Figure 3.1 shows the dimensions of specimens and Table 3.1 shows the list of specimens. The 

specimen is FRCC prism with square cross section and its total length is 600mm. One steel deformed 

rebar D16 (SD490: specific yield strength of 490MPa) was arranged in the center of cross section along 

the axial direction. The experimental parameters are cross-sectional size of prism, fiber types and fiber 

volume fraction. The cross section was set to 100mm, 120mm, and 140mm square for A, B, and C series 

of specimens, respectively. To control the cracking position, slits were set on both sides of specimen at 

100mm spacing. The depth of silt was changed in accordance with the cross-sectional size as the cross-

sectional area at the slit position was reduced to 60% area of full section. In order not to disturb the fiber 

orientation, the slits were installed after demolding using a concrete cutter. Aramid and PVA fibers were 

used for FRCC. Fiber volume fraction were set to 0% (mortar), 1%, and 2% for each fiber. Three 

specimens were tested for each combination of test parameters. 

 

 
Figure 3.1 Dimension of specimens 
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Table 3.1 List of specimens 

Type ID 
Fiber 

Cross-sectional size 
(Sectional size at slit) 

Common factor 
Types 

Volume 
fraction 

No Fiber-A 1~3 ― ― 

100mm×100mm 
(100mm×60mm) 

Length: 600mm 
Number of slits: 6 
Spacing of slits: 100mm 
Steel rebar: D16 (SD490) 

AF1-A 1~3 
Aramid 

1.0% 
AF2-A 1~3 2.0% 

PVA1-A 1~3 
PVA 

1.0% 
PVA2-A 1~3 2.0% 

No Fiber-B 1~3 ― ― 

120mm×120mm 
(120mm×72mm) 

AF1-B 1~3 
Aramid 

1.0% 
AF2-B 1~3 2.0% 

PVA1-B 1~3 
PVA 

1.0% 
PVA2-B 1~3 2.0% 

No Fiber-C 1~3 ― ― 

140mm×140mm 
(140mm×84mm) 

AF1-C 1~3 
Aramid 

1.0% 
AF2-C 1~3 2.0% 

PVA1-C 1~3 
PVA 

1.0% 
PVA2-C 1~3 2.0% 
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3.2.2 Used Materials 

 

Table 3.2 shows the dimensions and mechanical properties of both aramid and PVA fiber used in 

FRCC and Figure 3.2 shows the visual appearance of the fibers. Aramid fiber is the same one used in the 

previous study [13], and PVA fiber is also the same one used in the previous studies [12,14].  

Table 3.3 shows the mixture proportion and mechanical properties of FRCC. The mixture 

proportion is also same one designed in the previous studies [12, 13]. Since the fresh FRCC shows self-

compacting characteristics, FRCC was filled into the mold by pouring from one end of the mold as shown 

in Figure 3.3 paying attention not to disturb the fiber orientation. The compressive strength and elastic 

modulus of FRCC shown in Table 3.3 were obtained from compression test of 100mm x 200mm 

cylinder test pieces.  

Table 3.4 shows the mechanical properties of reinforcing bar. Steel deformed reinforcing bar with 

nominal diameter of 16mm and specific yield strength of 490MPa was utilized. 

 

Table 3.2 Dimensions and mechanical properties of fibers 

Fiber 
Length 
(mm) 

Diameter 
(mm) 

Tensile strength 
(MPa) 

Elastic modulus 
(GPa) 

Aramid 30 0.50 3432* 73* 
PVA 12 0.10 1200 28 

 * Properties obtained by original yarns 

      

(a)    (b) 

Figure 3.2 Visual appearance of fibers: (a) Aramid; (b) PVA 

 

Table 3.3 Mixture proportion and mechanical properties of FRCC 

Type 
Unit weight (kg/m3) Compressive 

strength 
(MPa) 

Elastic 
modulus 

(GPa) Water Cement Sand Fly ash Fiber 

No Fiber 

380 678 484 291 

0 52.5 18.1 
AF1 13.9 48.2 18.1 
AF2 27.8 47.5 16.4 

PVA1 13 49.5 17.6 
PVA2 26 41.2 15.6 
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Figure 3.3 Casting method of FRCC 

 

Table 3.4 Mechanical properties of reinforcing bar 

Type 
Yield strength 

(MPa) 
Elastic modulus 

(GPa) 
Yield strain 

(μ) 
Tensile strength 

(MPa) 
D16 (SD490) 516 198 2604 709 
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3.2.3 Loading and Measurement 

 

Figure 3.4 shows the set-up of loading and measurement. Uniaxial monotonic tension loading is 

conducted under the controlled displacement using universal testing machine. The total deformation was 

measured by two linear variable displacement transducers (LVDTs) to confirm the yielding of steel rebar. 

Crack width at each slit position was measured by Pi-type LVDTs arranged at 100mm spacing on both 

side of the specimens. The criteria of defining crack width is explained in detail in section 3.3.1. Visible 

crack observations were recorded in each loading measurement step.  

 

 

Figure 3.4 Set-up of loading and measurement 
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3.3  Experiment Results 

3.3.1 Crack Patterns and Crack Width 

 

Figure 3.5 shows the examples of crack patterns after yielding of steel rebar. The specimens with 

fewer cracks in longitudinal direction are selected as the examples in each parameter. Cracks took place 

at slit positions before steel rebar yielding in all specimens. However, branched cracks at slit positions or 

another crack at no-slit position were observed in many specimens. The total number of cracks increased 

with decreasing of cross-sectional area and increasing of fiber volume fraction. 

In the case of a single crack at slit position, the crack width is obtained by averaging two values 

measured by Pi-type LVDTs on both sides of specimen ignoring the elastic deformation of FRCC. After 

the second crack was observed in one measurement region as shown in Figure 3.6, the measured data at 

that region was excluded from the evaluation, so that the measured crack width corresponds to a single 

crack. 
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 No Fiber AF1 AF2 PVA1 PVA2 

A series 
(100mm×100mm) 

     

B series 
(120mm×120mm) 

     

C series 
(140mm×140mm) 

     

Figure 3.5 Examples of crack patterns (after yielding of steel rebar) 
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(①: first crack, ②: second crack, ③: third crack) 

Figure 3.6 Examples of cracking process 
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3.3.2 Steel Strain – Crack Width Relationship 

 

Figure 3.7 shows the steel strain – crack width relationships obtained from the loading test. The 

steel strain is calculated from the measured tensile load by using the elastic modulus of reinforcing bar 

previously shown in Table 3.4. The crack width of these curves increases just after the beginning of the 

loading due to the deformation of FRCC in the measurement region. To compare the crack opening 

behavior, the average line of test results is also shown in Figure 3.7 as dotted line. Each experimental 

curve is approximated with proportional relations (y = a·x) by using the least square method and the 

average lines are determined by averaging these coefficients, a, in each parameter.  

     The slope of average lines decreases with increasing of cross-sectional size by comparing among 

No Fiber-A, B and C specimens. Since the number of cracks decreases with increasing of cross-sectional 

area, crack opening tends to be larger at the same steel strain. In the case of FRCC specimens, the 

influence of sectional size is less than the case of No Fiber specimens because of the fiber bridging effect. 

By comparing the average lines in the same series of cross section, increasing of fiber volume 

fraction increases the slope of the average lines both in AF and PVA specimens. Crack opening tends to 

be smaller with increasing of fiber volume fraction because the fiber bridging force at crack increases. 

On the other hand, by comparing the average lines between AF and PVA specimens in the same fiber 

volume fraction and the same series of cross section, the difference of the slope is unclear. It can be said 

that it is difficult to compare the crack opening behavior only by the average lines, hence, the difference 

is discussed in Chapter 4 by using the theoretical curves.  
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Figure 3.7 Steel strain – crack width relationships 

  

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

No Fiber-A
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

No Fiber-B
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

No Fiber-C
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF1-A
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF1-B
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF1-C
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF2-A
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF2-B
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

AF2-C
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA1%-A
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA1%-B
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA1%-C
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA2%-A
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA2%-B
 Test results
 Average

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

PVA2%-C
 Test results
 Average



 

－27－ 
 

Chapter 4 Adaptability of Theoretical Solution of 

Crack Width Prediction 
  

4.1  Introduction 

 

In this chapter, theoretical curves of steel strain – crack width relationships are calculated using the 

proposed formula described in Chapter 2 and compared with the test results obtained in Chapter 3 to 

confirm the adaptability of the solution. In addition, parametric study of theoretical curves is conducted 

using the models of bridging law for 4 types of fibers, and the crack width is compared each other to 

understand the influence of fiber types on crack width evaluation. 
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4.2  Bridging Law Model 

4.2.1 Aramid and PVA-FRCC 

 

At first, the bridging law of aramid-FRCC (Vf = 2%) is expressed by bilinear model as similar with 

the model for PVA-FRCC [14] in which the characteristic points of the model are given by the function 

of fiber orientation intensity. The details can be found in Appendix. The maximum point (δmax, wmax) and 

the point when the bridging stress becomes zero (wtu, 0) are expressed by the function of fiber orientation 

intensity, k, as follows. 

𝜎௠௔௫ = 2.0𝑘଴.ଷ଴ (MPa) (21) 

𝑤௠௔௫ = 0.60𝑘଴.଴଻ (mm) (22) 

𝑤௙௨ =  9.3𝑘଴.଴ହ(mm) (23) 

In the case of PVA-FRCC, the bridging law of fiber volume fraction 2% is expressed by tri-linear 

model in the previous study [14]. The maximum point (δmax, σmax), the second folding point (δ2, σ2) and 

the point when the bridging stress becomes zero (δtu, 0) are also given by the function of k as follows. 

𝛿௠௔௫ = 0.20𝑘଴.ଵ଼ (mm) (24) 

𝜎௠௔௫ = 2.0𝑘଴.ଷ଴ (MPa) (25) 

𝛿ଶ = 0.45 (mm) (26) 

𝜎ଶ = 0.60𝑘଴.଻ଷ (MPa) (27) 

𝛿௙௨ = 6 (mm) (28) 

The value of k is decided based on the results of previous study in which the size effect on fiber orientation 

of FRCC has been investigated [23].  

In that study, four-point bending test was conducted for three different dimensions of PVA-FRCC 

prism specimens with 40 mm x 40 mm, 100 mm x 100 mm, and 180 mm x 280 mm in cross-section. The 

section analysis was performed by using bridging law of PVA fiber considering several cases of fiber 

orientation intensity, k. The test results of 100 mm x 100 mm cross section specimens showed the best 

agreement with the analytical results in bending strength by assuming k = 1.  

For these reasons, k = 1 is also adapted for Eq.(21) – Eq.(28), and the models shown in Figure 4.1 

are used for the calculation of theoretical curves. The models of Vf = 1% and 0.5% in both fiber types are 

assumed that bridging force is half and quarter as much as that of Vf = 2%, respectively. The models of Vf 

= 0.5% is used only in the parametric study. When the bridging law is substituted for the theoretical 

formula, bridging stress is multiplied by 0.6 times, which corresponds to the ratio of cross-sectional area 

at slit position to the whole section, in order to take the absence of bridging fibers at slit into account. In 

No Fiber specimens, bridging stress is substituted by zero in the formula. 

 



 

－29－ 
 

      
   (a)        (b) 

Figure 4.1 Adapted bridging law models in theoretical formula 

(a) Aramid-FRCC; (b) PVA-FRCC 
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4.2.2 PP and Steel-FRCC 

 

     In addition to aramid and PVA-FRCC, the theoretical curves are calculated using the bridging law 

models of PP and steel-FRCC for the parametric study. Table 4.1 shows the dimensions and mechanical 

properties of both PP and steel fiber and Figure 4.2 shows the visual appearance of the fibers. These 

fibers are the same one used in the previous studies [24,25].  

The bridging law (bridging stress – crack width relationship) of PP and steel-FRCC are calculated 

similarly as the previous study [13]. The individual fiber pullout models obtained in the previous studies 

(PP [24], steel [25]) are adapted for the pullout load of an individual fiber. Table 4.2 shows the used 

parameters for pullout behavior of an individual fiber for the calculation of bridging law. The snubbing 

effect and the reduction of apparent rupture strength are also considered, and the values listed in the table 

are adapted for calculation. The fiber orientation is assumed to be the same as the case of calculating the 

bridging laws for aramid and PVA-FRCC in the previous section, and the value k = 1 is adapted for the 

fiber orientation intensity. 

 

Table 4.1 Dimensions and mechanical properties of fibers 

Fiber 
Length 
(mm) 

Diameter 
(mm) 

Tensile strength 
(MPa) 

Elastic modulus 
(GPa) 

PP 30 0.70 580 4.9 
Steel 13 0.16 2825 210 

 

      

(a)    (b) 

Figure 4.2 Visual appearance of fibers: (a) PP; (b) Steel 

 

Table 4.2 Parameter for individual fiber pullout behavior 

Parameter 
Input 

PP [24] Steel [25] 

Pullout model 
(ψ = 0) 

Maximum pullout load, Pmax,0 (N) 25×lb
0.61 1.3×lb 

Crack width at Pmax,0, δmax,0 (mm) 0.062×lb 0.03×lb 

Snubbing effect by ψ 
Maximum pullout load, Pmax,ψ(N) Pmax,0×e 0.21ψ Pmax,0×e (2.6 -0.3lb)ψ 
Crack width at Pmax,ψ, δmax,ψ(mm) δmax,0×e 1.4ψ δmax,0 

Apparent rupture strength, σfu (MPa) 491×e -0.36ψ 2825 
Notation:  = fiber inclination angle to x-axis (rad.) 

         lb = embedded length of fiber (mm) 
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     Figure 4.3 shows the calculation results of bridging law for PP and steel-FRCC. Fiber volume 

fraction is set to 2%. The obtained bridging law is modeled subjecting to the region of crack width smaller 

than 1 mm as shown in Figure 4.4. The bridging law of PP-FRCC is modeled as elastic model connecting 

the origin and the point at crack width = 1 mm, and that of steel-FRCC is modeled as bilinear model 

connecting the origin, the point at maximum bridging stress and that at crack width = 1 mm. 

     Figure 4.5 shows the used bridging law models of PP and steel-FRCC in the calculation of 

theoretical curves for the parametric study. The models of Vf = 1% and 0.5% in both fiber types are 

assumed that bridging force is half and quarter as much as that of Vf = 2%, respectively. 

 

     
     (a)      (b) 

Figure 4.3 Calculation result of bridging law: (a) PP-FRCC; (b) Steel-FRCC 

 

     
     (a)      (b) 

Figure 4.4 Modeling of bridging law: (a) PP-FRCC; (b) Steel-FRCC 
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     (a)      (b) 

Figure 4.5 Adapted bridging law models in theoretical formula 

(a) PP-FRCC; (b) Steel-FRCC 
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4.3  Other Constitutive Laws 

 

Table 4.3 shows the used parameters in theoretical formula, Eq.(20). The nominal values are used 

in cross-sectional area and perimeter of steel rebar. Sectional size of FRCC agrees with the dimensions 

of specimens described in Chapter 3. The elastic modulus of steel rebar and FRCC is obtained from the 

material tests explained in Chapter 3. 

Cracking strength of FRCC is calculated from the test results of uniaxial tension test because it is 

difficult to obtain the value directly from the material test. According to the steel strain – crack width 

relationships of No Fiber-C, AF1-B, AF2-B, PVA1-C and PVA2-C specimens shown in Figure 3.7, rapid 

increasing of crack width is observed in the small range of steel strains. It is considered that the cracks 

start opening at those steel strains. The values are 324μ, 239μ, 318μ, 420μ and 492μ in No Fiber, AF1, 

AF2, PVA1 and PVA2 specimens, respectively. These values are converted to the tensile load by using 

elastic modulus and cross-sectional area of steel rebar. The tensile loads are divided by the cross-sectional 

area of FRCC at slit position (B series: 120 mm x 72 mm, C series: 140 mm x 84 mm) and cracking 

strength is calculated as shown in Table 4.3. 

 

Table 4.3 Used parameters in theoretical formula 

 No Fiber AF1 AF2 PVA1 PVA2 

Steel rebar 
Cross-sectional area As mm2 198.6 
Perimeter φs mm 50 
Elastic modulus Es GPa 198 

FRCC 
Cross-sectional area Ac mm2 A:1002, B:1202, C:1402 
Elastic modulus Ec GPa 18.1 18.1 16.4 17.6 15.6 
Cracking strength σcr MPa 1.03 1.09 1.45 1.33 1.56 
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Bond stress – slip relationship is assumed from the test result of steel rebar pullout test using PVA-

ECC [26] which compressive strength is almost the same as FRCC used in this study. Based on the test 

result of PVA-ECC specimens with D16 rebar and cover thickness of 32mm, bond stiffness is assumed 

as kbo = 50N/mm3 and bond stress – slip relationship is modeled as shown in Figure 4.6. 

 

    
        (a)     (b) 

Figure 4.6 Bond stress - slip relationship 

(a) Examples of test results; (b) Model 
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4.4  Adaptability of Crack Width Prediction 

 

Figure 4.7 shows the steel strain – crack width relationships obtained from both uniaxial tension 

tests and theoretical formula, Eq.(20). While the test results show the crack opening behavior of each 

crack, theoretical curve shows the possible maximum crack width as previously mentioned in Chapter 4. 

The theoretical curves of PVA1-B and C specimens show folding points of the slope at crack width = 0.2 

mm. This is because the fiber bridging law model of PVA-FRCC has the folding point at crack width = 

0.2 mm as shown in Figure 4.1. 

The curves of measured crack widths in most of the specimens locate in the area of crack width 

smaller than the theoretical curves. It can be said that the theoretical formula shows a good adaptability 

with the experimental results. However, the crack width of some test results exceeds the theoretical curve 

especially in C series specimens. In this study, fiber orientation intensity is assumed to be k = 1 regardless 

of sectional size of the specimen. It has been reported that the increasing of sectional size decreases fiber 

orientation intensity and fiber bridging stress of bridging law [23]. It is considered that bridging effect is 

overestimated, and crack width is underestimated in theoretical formula especially in the specimens with 

larger cross section. 

  



 

－36－ 
 

 

 

 

 

 

 

Figure 4.7 Comparison between theoretical curve and test results 
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Figure 4.8 shows the comparison of theoretical curves, which expresses the possible maximum 

value of crack width. By comparing the curves among No Fiber, PVA1 and PVA2 specimens in the same 

series of cross section, the crack width at the same steel strain is smaller in specimens with larger volume 

fraction of fibers. This is because the fiber bridging force increases with increasing of fiber volume 

fraction.  

In the case of aramid fiber, although the crack width in AF1 specimen is smaller than that in No 

Fiber specimen, there are few differences of crack width between AF1 and AF2 specimens. This is 

because the theoretical curve is influenced not only by the bridging law but also by the cracking strength 

of FRCC. While the bridging force increases with increasing of fiber volume fraction, the cracking 

strength also increases, hence, the difference of crack width between AF1 and AF2 specimens becomes 

small. 

By comparing the curves between AF and PVA specimens, the crack width is smaller in PVA1 

specimen than AF1 and AF2 specimens. This is because the initial slope of bridging law of PVA fiber is 

larger than that of aramid fiber. According to the previous study [27], it is considered that the alcohol 

group in a PVA molecule brings good bond in matrix, hence, PVA fiber shows good bridging performance 

especially in the small range of crack width. However, the crack width rapidly increases after 0.2 mm in 

PVA1-B and C specimens because the crack width reaches to the softening branch of bridging law 

resulting from the rupture of fibers [12]. On the other hand, rapid crack opening is not observed in the 

curves of AF specimens because aramid fiber shows higher tensile strength than PVA fiber. 

 

 

Figure 4.8 Comparison of theoretical curves 
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4.5  Influence of Fiber Types on Crack Width Evaluation 

 

     The parametric study of theoretical curves given by Eq.(20) is conducted using the models of 

bridging law for 4 types of fibers, and the crack width is compared each other. Figure 4.9 shows the 

dimension of steel-reinforced FRCC prism for the calculation of theoretical curves. The prisms 

correspond to A and C series specimens for uniaxial tension test in Chapter 3 except for the absence of 

slits. The length of prism is arbitrary because the length is not required to calculate theoretical curves. 

The theoretical curves are calculated by varying the models of bridging law. The bridging law models of 

aramid, PVA, PP and steel-FRCC shown in Figure 4.1 and Figure 4.5 are adapted for the theoretical 

formula, Eq.(20). The other parameters are set to be constant regardless of the types of fibers to compare 

the influence of bridging law on crack width clearly, and the values of PVA 2% (PVA2) listed in Table 

4.3 and bond stiffness of k = 50 N/mm3 shown in Figure 4.6 are used in every cases. 

 

 
Figure 4.9 Dimension of steel-reinforced FRCC prism 
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     Figure 4.10 shows the comparison among theoretical curves obtained by the parametric study. The 

theoretical curves of No Fiber specimens are also shown in each graph to compare the fiber bridging 

effect. According to the figures, increasing of fiber volume fraction decreases the crack width at the same 

steel strain. This tendency can be observed in every types of fibers. By comparing among the curves with 

different fiber types in the same series of cross section and fiber volume fraction, the crack width becomes 

smaller in the order of PP, aramid, PVA and steel-FRCC. This is because the initial slopes of the bridging 

law models become larger in the same order.  

     Especially in the case of steel-FRCC, the crack width is much smaller even in specimen with fiber 

volume fraction 0.5% than the other types of specimen. This is because the initial slope and the maximum 

bridging stress of the bridging law model for steel-FRCC are larger than the other bridging law models. 

It is considered that this is brought by the following characteristics of steel fiber: 

 Steel fiber has high tensile strength and does not rupture at the pullout process from matrix. 

 The elastic modulus of steel fiber is large 

 The snubbing effect resulting from the fiber inclination angle is large in steel-FRCC 

On the other hand, in the case of PP-FRCC, the difference of crack width is small by comparing 

between the curves of PP-2% and No Fiber. This is because the initial slope of the bridging law model 

for PP-FRCC is small, which is brought by the following characteristics of PP fiber: 

 The elastic modulus of PP fiber is small 

 The bond stiffness between PP fiber and cementitious matrix is small. 

 

 

 

 

Figure 4.10 Comparison of theoretical curves 

  

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

A Series
Vf = 0.5%

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

A Series
Vf = 1.0%

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

A Series
Vf = 2.0%

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

C Series
Vf = 0.5%

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

C Series
Vf = 1.0%

0.1 0.2 0.3

1000

2000

0
Crack width (mm)

St
ee

l s
tr

ai
n 

(
)

C Series
Vf = 2.0%



 

－40－ 
 

Chapter 5 Conclusion 
 

In this study, a simplified method to predict crack width in steel-reinforced FRCC prism was 

derived by theoretical calculation considering both fiber bridging effect and bond interaction between 

FRCC and reinforcing bar. The uniaxial tension test was conducted for 45 specimens varying the sectional 

size of prism, fiber types and fiber volume fraction to measure the crack width experimentally, and the 

proposed method was adapted for the evaluation of the test results. The main conclusions of this research 

are summarized as below. 

 

(1) The steel strain – crack width relationship was given by a simple formula using bond constitutive 

law and fiber bridging law in addition to the material parameters of FRCC and rebar. 

 

(2) Theoretical curves were calculated by using the proposed formula and compared with the test results. 

The theoretical curves showed a good adaptability to evaluate the crack width in each test parameter. 

 

(3) According to the evaluation results using theoretical curves, crack width was smaller in PVA-FRCC 

by comparing with aramid-FRCC because the initial slope of bridging law is larger. However, crack 

width rapidly increased when the crack width reaches to the softening branch of the bridging law in 

PVA-FRCC, while this tendency was not observed in aramid-FRCC because of the high tensile 

strength of aramid fiber. 

 

(4) Parametric study of theoretical curves was conducted using the models of bridging laws for 4 types 

of fibers. The crack width at the same steel strain becomes smaller in the order of PP, aramid, PVA 

and Steel fiber because the initial slope of the bridging laws become larger in the same order. 

 



 

－41－ 
 

Acknowledgements 
 

     I would like to express my deepest gratitude to my academic supervisor, Professor Toshiyuki 

Kanakubo, for his precious guidance, constructive supervision, priceless feedback, and pleasant 

communication during this research project. Without his encouragement and support, I could not finish 

my research and complete this thesis. His extensive research experience and keen insight have impressed 

me deeply and will certainly encourage me for the rest of my life as a researcher. 

     I would like to thank my vice-academic supervisor Associate Professor Akira Yasojima and a 

technical staff member Mr. Kojima, for their extremely important assistance on my experiment and their 

valuable comments on my research. 

     I would also like to thank all the members in this laboratory for their kind support and creating such 

a nice working environment. Special thanks go to Keisuke Namiki and Takumi Koba for their help in 

executing experimental work. 

     At last, special thanks are also expressed to my dearest parents for their support and understanding. 

 

  



 

－42－ 
 

Appendix  

Modeling of Bridging law for Bundled Aramid-FRCC 

 

     The modeling method of aramid-FRCC referred in Chapter 4 is described in this Appendix. Aramid 

fiber is a bundled fiber with nominal diameter of 500 μm. The visual appearance of the used fiber is 

shown in Figure A.1. The original yarns of aramid fibers with nominal diameter of 12 μm are twisted to 

form a thick individual fiber, and sized not to unravel in matrix. The tensile strength and elastic modulus 

of the original yarn is 3432 MPa and 73 GPa, respectively. Chopped fibers with length of 30 mm are 

utilized for mixing FRCC. 

 

      

      (a)    (b) 

Figure A.1 Visual appearance of used aramid fiber: 

(a) Chopped aramid fibers for mixing FRCC; (b) Condition of bundling of yarns 

 

The bridging law, i.e., bridging stress - crack width relationship is calculated as similar with the 

previous study [12]. In a FRCC prism subjected to the uniaxial tension, fibers bridge through crack plane 

as shown in Figure A.2 (a). Fibers are distributed in crack plane with various inclination angle. The 

pullout behavior and rupture strength of the individual fiber is affected by the fiber inclination angle that 

is defined as shown in Figure A.2 (b). The angle, , expresses the fiber inclination angle to x-axis, and 

angles,  and , express ones between x-axis and projected lines of the fiber to x-y plane and z-x plane, 

respectively. The bridging stress can be calculated by summation of forces carried by individual fibers 

bridging through crack plane considering the probability density function (PDF) for fiber inclination 

angles and fiber centroidal location as given by Eq.(A.1).  

 

𝜎௕௥௜ௗ௚௘ =
𝑃௕௥௜ௗ௚௘

𝐴௠
=

𝑉௙

𝐴௙
⋅ ෍ ෍ ෍ 𝑃௜௝(𝑤, 𝜓) ∙ 𝑝௫௬(𝜃௜) ∙ 𝑝௭௫ ቀ

௝
ቁ ∙ 𝑝௫(𝑦௛ , 𝑧௛) ∙

௜௝

∆𝜃 ∙ ∆ ∙ (∆𝑦 ∙ ∆𝑧)

௛

(A. 1) 

where, 

bridge = bridging stress, 

Pbridge = bridging force (= total of pullout load), 

Am = cross-sectional area of matrix, 
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Vf  = fiber volume fraction, 

Af  = cross-sectional area of an individual fiber,  

w  = crack width, 

P(w,) = pullout load of an individual fiber, 

pxy, pzx = PDF (elliptic distribution) for fiber inclination angle, 

px  = PDF for fiber centroidal location (assumed to be constant), 
Δ y·Δz = area of infinitesimal element on crack plane. 

 
 

     
     (a)    (b) 

Figure A.2 Schematic drawing for the calculation of bridging law 

(a) Fibers bridging through crack plane; (b) Definition of fiber inclination angle 

 

The bilinear model proposed in the previous study [13] is adapted for the pullout load of an 

individual fiber, P(w,). The elliptic distribution [12] is adopted for the PDF, pxy and pzx, for fiber 

inclination angles. The elliptic distribution is defined by two parameters; principal orientation angle, r 

(argument of one radius of elliptic function) and orientation intensity, k (ratio of the two radii of elliptic 

function). The fiber orientation can be expressed by these parameters. The random orientation is given 

by k = 1. Fibers tend to orient toward r when the value of k is larger than 1, while fibers tend to orient 

toward the perpendicular to r when the value of k is smaller than 1.  

The PDF for fiber centroidal location, px, is set to constant assuming the uniform distribution of 

fibers along x-axis. The parameters for the calculation are summarized in Table A.1. Fiber volume 

fraction and principal orientation angle is set to 2% and 0 degree, respectively. 
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Table A.1 Parameters for calculation of bridging law  

Parameter Input 
Fiber volume fraction, Vf (%) 2.0 

Length of fiber, lf (mm) 30 
Diameter of fiber, df (mm) 0.5 

Apparent rupture strength of fiber, fu (MPa) [13] fu = 1080·e-0.667 

Bilinear 
model [13] 

Maximum pullout load, Pmax (N) Pmax = 7.47·lb
Crack width at Pmax, wmax (mm) wmax = 0.13·lb

0.64
Notation:  = fiber inclination angle to x-axis (rad.) 
         lb = embedded length of fiber (mm) 

 

The calculated bridging laws for the orientation intensity k from 0.1 to 10 are shown in Figure A.3. 

The left figure shows whole curves, and the right figure focuses on small ranges until w = 5 mm. The 

bridging laws shown in the figures are calculated with 0.1 intervals of k in the case of k < 1, and with 1 

interval when k > 1. The bridging stress in Figure A.3 do not include the tensile stress carried by the 

matrix before cracking to exhibit the tensile stress due to only bridging force of fibers. Each curve shows 

maximum bridging stress at about w = 0.6 mm. After that, bridging stress decreases moderately with 

increasing of crack width. This is because the most of fibers do not rapture and they gradually pulled out 

from the matrix. Bridging stress becomes zero when the value of crack width reaches to 15 mm (half 

length of the fiber) because all fibers are completely pulled out from matrix. On the other hand, by 

comparing each curve, the maximum bridging stress remarkably increases with increasing of the value of 

k. In other word, bridging stress becomes larger when the fibers strongly oriented to the normal direction 

of crack surface. 

 

      
     (a)      (b) 

Figure A.3 Calculation results of bridging law: (a) w = 0~15 mm; (b) w = 0~5 mm 
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The calculated bridging laws are modeled by simple forms considering fiber orientation. From 

Figure A.3, the bridging law is simply characterized by two regions, i.e., curve until the maximum stress 

and softening branch. Therefore, the bridging law is modeled by bilinear model as shown in Figure A.4. 

The model has three parameters: the maximum bridging stress, max, the crack width at max, wmax, and 

the crack width when bridging stress becomes to zero, wtu. The values of max and wmax of the model can 

be obtained directly from the calculation results. The value of wtu is determined to have an equivalent 

fracture energy with the calculated bridging law in the softening branch. The modeled bridging laws for 

each fiber orientation intensity k are shown in Figure A.5. The comparison between the calculated 

bridging laws and the models in k = 0.1, 1, 10 are also shown in Figure A.6. 

 

 
Figure A.4 Bilinear model for bridging law 

 
Figure A.5 Modeled Bridging laws 

 

Figure A.6 Comparison between the calculated bridging laws and models 
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The three parameters in the model are expressed as a function of the fiber orientation intensity k to 

simplify the modeling of bridging law. The relationships between the parameters and k are shown in 

Figure A.7. The dotted lines in all figures exhibit the regression calculation results by the least square 

method. The solid lines exhibit the modified regression calculation result to simplify the relational 

expression between each parameter and k as given by Eq.(A.2) to Eq.(A.4). 

𝜎௠௔௫ = 2.0𝑘଴.ଷ (MPa) (A. 2) 
𝑤௠௔௫ = 0.60𝑘଴.଴଻ (mm) (A. 3) 

𝑤௧௨ = 9.3𝑘଴.଴ହ (mm) (A. 4) 

The characteristic points of bilinear model of bridging law (Figure A.4) in each fiber orientation intensity 

k can be easily obtained by using these equations. 

 

      

         (a)         (b)     (c) 

Figure A.7 Relationship between each parameter of model and orientation intensity k: 

(a) max – k relationship; (b) wmax – k relationship; (c) wtu – k relationship 

 

  

0 5 10
0

1

2

3

4

 m
ax

 (
M

P
a)

Orientation intensity :  k

 max=2.0k0.3

0 5 10
0

0.2

0.4

0.6

0.8

1

w
m

ax
 (

m
m

)

Orientation intensity :  k

 wmax=0.60k0.07

0 5 10
0

5

10

w
tu

 (
m

m
)

Orientation intensity :  k

 wtu=9.3k0.05



 

－47－ 
 

References 
 

[1] Matsumoto, T., Mihashi, H., (2002), “JCI-DFRCC Summary Report on DFRCC Terminologies and 

Application Concepts”, Proceedings of the JCI International Workshop on Ductile Fiber Reinforced 

Cementitious Composites (DFRCC), pp.59-66. 

[2] Rokugo, K., Kanda, T. eds., (2013), “Strain Hardening Cement Composites: Structural Design and 

Performance”, RILEM State-of-the-Art Reports 6, 90pp. 

[3] Li, V.C., (2019), “Engineered Cementitious Composites (ECC) - Bendable Concrete for Sustainable 

and Resilient Infrastructure”, Springer: Germany, 419pp. 

[4] Löfgren, I., (2005), “Fiber-Reinforced Concrete for Industrial Construction – A Fracture Mechanics 

Approach to Material Testing and Structural Analysis,” PhD thesis, Department of Civil and 

Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden. 

[5] Balaguru, P. N., Shah, S. P., (1992), “Basic Concepts and Mechanical Properties: Tension”, Fiber-

Reinforced Cement Composites, McGraw-Hill, New York, NY, USA, pp.37-84. 

[6] Amin, A., Foster, S. J., Muttoni, A., (2015), “Derivation of the σ-w Relationship for SFRC from 

Prism Bending Tests”, Structural Concrete, Vol. 16, Issue 1, pp.93-105. 

[7] Eduardo B. Pereira, Gregor Fischer, Joaquim A. O. Barros., (2012), “Direct assessment of tensile 

stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)”, Cement and 

Concrete Research, Vol. 42, Issue 6, pp.834-846. 

[8] Jing Yu, Christopher K. Y. Leung, (2018), “Novel experimental method to determine crack-bridging 

constitutive relationship of SHCC using digital image processing”, Strain-Hardening Cement-Based 

Composites SHCC-4, Springer, Dresden, Germany, Vol. 15, pp.55-62. 

[9] Li, V.C., (1993), “Micromechanics of Crack Bridging in Fibre-Reinforced Concrete”, Material and 

Structures 26, pp.486-494 

[10] Laranjeira, F., (2010), “Design-oriented Constitutive Model for Steel Fiber Reinforced Concrete”, 

PhD-thesis. Universitat Politècnica de Catalunya, Spain. 

[11] En-Hua Yang, Shuxin Wang, Yingzi Yang and Victor C. Li, (2008), “Fiber-Bridging Constitutive 

Law of Engineered Cementitious Composites”, Journal of Advanced Concrete Technology, Vol. 6, 

No. 1, pp.181-193. 

[12] Kanakubo, T., Miyaguchi, M., Asano, K., (2016), “Influence of Fiber Orientation on Bridging 

Performance of Polyvinyl Alcohol Fiber-Reinforced Cementitious Composite”, Materials Journal, 

American Concrete Institute, Vol.113, No.2, pp.131-141. 

[13] Kanakubo, T., Echizen, S., Wang, J., Mu, Y., (2020), “Pullout Behavior of Bundled Aramid Fiber in 

Fiber-Reinforced Cementitious Composite”, Materials 2020, 13(7), 1746. 

[14] Ozu, Y., Miyaguchi, M. Kanakubo, T., (2018), “Modeling of Bridging Law for PVA Fiber- 

Reinforced Cementitious Composites Considering Fiber Orientation.” Journal of Civil Engineering 

and Architecture 12, 651-661 



 

－48－ 
 

[15] Kanakubo, T., Yamato, N., (2014), “Crack Width Prediction Method for Steel and FRP 

Reinforcement Based on Bond Theory.” Journal of Advanced Concrete Technology Vol.12, pp.310-

319 

[16] Deluce J., Lee S.C., (2012), Vecchio F.J., “Crack Formation in FRC Structural Elements Containing 

Conventional Reinforcement”, In: Parra-Montesinos G.J., Reinhardt H.W., Naaman A.E. (eds) High 

Performance Fiber Reinforced Cement Composites 6, RILEM State of the Art Reports, vol 2, 

Springer, Dordrecht, pp.271-278. 

[17] Kunieda, M., Hussein, M., Ueda, N and Nakamura, H., (2010), “Enhancement of crack distribution 

of UHP-SHCC under axial tension using steel reinforcement.” J. of Advanced Concrete Technology, 

8(1), pp.49-57 

[18] Fischer, G., Li, V.C., (2002), “Influence of Matrix Ductility on Tension-Stiffening Behavior of Steel 

Reinforced Engineered Cementitious Composites (ECC)”, Structural Journal, American Concrete 

Institute, Vol.99, No.1, pp.104-111. 

[19] Stang, H., Aarre, T., (1992), “Evaluation of Crack Width in FRC with Conventional Reinforcement”, 

Cement and Concrete Composites 14, pp.143-154. 

[20] Amin, A., Gilbert, R. I., (2018), “Instantaneous Crack Width Calculation for Steel Fiber-Reinforced 

Concrete Flexural Members”, Structural Journal, American Concrete Institute, Vol.115, No.2, 

pp.535-543. 

[21] Ogura, H., Kunieda, M., Nakamura, H., (2019), “Tensile Fracture Analysis of Fiber Reinforced 

Cement-Based Composites with Rebar Focusing on the Contribution of Bridging Forces”, Journal 

of Advanced Concrete Technology Vol.17, 216-231 

[22] Sunaga, D., Kanakubo, T., Namiki, K., (2019), “Study on Evaluation of Crack Width in Steel 

Reinforced DFRCC Members”, Proceedings of the Japan Concrete Institute, Vol.41, No.2, pp.1171-

1176. (in Japanese) 

[23] Ozu, Y., Watanabe, K., Yasojima, A., Kanakubo, T., (2016), “Evaluation of Size Effect in Bending 

Characteristics of DFRCC Based on Bridging Law,” ACF 2016, The 7th International Conference of 

Asian Concrete Federation, 3. Concrete structures, Paper No.32. 

[24] Hashimoto, H., Mu, Y., Yamada, H., Kanakubo, T., (2017), “Slip-Out Characteristics of Aramid and 

PP Fibers and Calculation of Bridging Law”, Concrete Research and Technology, Vol.28, pp.103-

111. (in Japanese) 

[25] Hashimoto, H., Yamada, H., Yasojima, A., Kanakubo, T., (2016), “Slip-Out Characteristics of Steel 

Wire and Calculation of Bridging Law”, Proceedings of the Japan Concrete Institute, Vol.38, No.1, 

pp.249-254. (in Japanese) 

[26] Asano, K., Kanakubo, T., (2016), “Study on Size Effect in Bond Splitting Behavior of ECC”, Bond 

in Concrete 2012, Volume 2. Bond in New Materials and under Severe Conditions, pp.855-859 

[27] Kanda, T., and Li, V. C., (1998), “Interface Property and Apparent Strength of High-Strength 

Hydrophilic Fiber in Cement Matrix”, Journal of Materials in Civil engineering, ASCE, Vol.10, No.1, 

pp.5-13. 


