ガラス繊維吹付け補強モルタルパネルの二軸性状

<u>1. はじめに</u>

近年、コンクリート系構造物の耐震補強は、施工の容 易さと耐久性に利を持つ連続繊維シート(以下シート) による巻き付け補強が多く用いられるようになって来て いる。しかし、シート補強は素材が高価ということもあ り、今後の民間建物の耐震補強を促進させる場合には大 きな問題となっている。今後の耐震補強の促進を考えた 場合、コストを考慮した施工が容易な補強工法を提案す るとともにその耐震性能を確認し、耐震補強後の構造安 全性を保証しなければならない。

そこで、本研究は今後の耐震補強を促進させるための 安価で施工の容易な補強方法、「ガラス繊維+ビニエス テル」を凹凸の多いコンクリート系建築構造物に現場吹 付けする新しい耐震補強工法(材料)、を提案するととも に、「ガラス繊維+ビニエステル」とコンクリートの相互 作用、すなわち多方向応力に対する接着・せん断・引張 強度等の基本的性状を、モルタルパネルによる平板の二 軸加力実験ならびに Modified Compression-Field Theory^[1] による解析により把握することを目的とする。

表-1 GFRP の性質

強 度	弹性係数	破断伸度	繊維含有率	借 老
(MPa)	(GPa)	(%)	(%)	通う
88.3	9.3	0.95	35	吹付厚 2mm

表-2 モルタルの性質

圧縮強度	弾性係数	圧縮強度時歪
(MPa)	(GPa)	(%)
69.0	30.7	0.316

2.3 加力·測定方法

純せん断加力では、各辺6本ずつ計24本のオイルジャ ッキを使用し、試験体の対角方向にそれぞれ同じ大きさ の引張力(南北方向)と圧縮力(東西方向)を加えた。 純引張加力では、北西・南東位置の計12本のオイルジャ ッキに同じ大きさの引張力を加えた。また、試験体表面 5方向には変位計を設置、パネル両面中央部のGFRPに は3方向歪ゲージを貼付した。加力方法の概略を図-2 に、変位計設置位置および歪ゲージ貼付位置を図-3に 示す。

2. 実験概要

<u>2.1 試験体</u>

試験体は、図-1 に示 す 300×300×15mmのモ ルタルパネルで、加力装 置固定用穴を24カ所、変 位計固定用ボルトを4カ 所設けた。モルタルパネ ルに与える応力は、純せ ん断と純引張の2種類で、 純せん断用試験体2体, 純引張用試験体1体,合 計3体準備した。

2.2 使用材料

ガラス繊維含有率 35%、目標吹付け厚 2mm として FRP 化した「ガラス繊維+ビニエステル」(以下 GFRP)、お よび目標圧縮強度を 50MPa としたプレミックスモルタ ルの力学特性を表-1,表-2に各々示す。

Bi-axial Behavior of Mortar Panels Strengthened with Sprayed Glass Fibers

HURUTA Tomoki and KANAKUBO Toshiyuki

3. 実験結果

実験結果一覧を表-3 に、各試験体のせん断応力と歪 ゲージおよび変位計によるせん断歪($\tau_{xy} - \gamma_{xy}$)関係を 図-4に示す。

純せん断加力試験体は2体とも GFRP の破断で破壊し、 モルタルの圧壊はみられなかった。加力中のひび割れ状 況は観測されていないが、歪ゲージによる τ_{xy}-γ_{xy}関係 はひび割れ発生と思われる時点までは直線的で、ひび割 れ発生と同時にせん断歪が急激に増加した。

試験体名	加力方法	最大せん断応力 (MPa)	破壞形式
GL-CT1	純せん断	6.17	破断
GL-CT2	純せん断	8.63	破断
GL-T1	純引張	3.65	破 断

表-3 実験結果一覧

図-4 せん断応力-せん断歪関係

4. Modified Compression-Field Theory による解析

Modified Compression Field Theory^[1]に多軸化および繊 維の付着を考慮した解析手法^[2]を用いて、実験結果と解 析結果を比較する(解析手法に関しては文献[2]を参照)。

4.1 解析上の数値

解析に用いた各性状の数値を表-4 に示す。モルタル の性状は 50 ¢×100mm テストピースの一軸圧縮試験に よる値を、GFRP の降伏付着力・降伏付着力時すべり量 は文献[3]による値を、破断強度・弾性係数は引張試験に よる値を各々用いた。

4.2 解析結果

実験結果と解析結果の比較を表-5 に示す。破壊形式 における実験結果と解析結果は、GFRP 破断で一致して いる。せん断応力の最大値の解析結果に対する実験結果 の比は2試験体とも0.97で、本解析は実験結果をよく表 している。解析方法および表-4 に示した解析上の数値 は妥当であると言えよう。

各試験体のせん断歪-せん断応力関係における変位計

による実験結果と解析結果を図-5 に示す。各試験体の 実験結果と解析結果は、実験結果の最大せん断応力時近 傍のデータは乱れているが、それ以前の両者はおおむね 対応している。

表-4 解析上の数値

試驗体名	σΒ	Ec	εc	Sm	τ _{by}	$S_{by} \times 10^{-3}$	f _{ru}	Er	t
	(MPa)	(GPa)	(%)	(mm)	(N/mm)	(mm)	(MPa)	(GPa)	(mm)
GL-CT1	69.0	30.7	0.32	113	0.91	0.39	88.3	9.3	1.43
GL-CT2				94					2.36

 $U B:
モルタルの圧縮強度 <math>E_c:
モルタルの弾性係数
ε_c:
モルタル圧縮強度時の歪 <math>S_m:
平均 \Gamma N T X 新聞 I 国 I 国
τ +
CFD D の いいい$ ε_{c} :モルタル圧縮強度時の歪 S_m:平均ひび割間隔(45°方向) τ_{b} :GFRPの降伏付着力(単位長さあたり) S_b:GFRPの降伏付着力時のすべり量 f GFRPの時期登録

fru:GFRP の破断強度 Er:GFRP の弾性係数 t:GFRP の平均厚

表-5 解析結果と実験結果の比較

	実験結果	艮	解析結果		
試験体名	最 大 せん断応力 (MPa)	破壊 形式	最 大	破壊 形式	実験値 /解析値
GL-CT1	6.17	破断	6.00	破断	0.97
GL-CT2	8.63	破断	8.35	破断	0.97

5. まとめ

「ガラス繊維+ビニエステル」(GFRP)で補強したモ ルタルパネルについて、二軸加力実験と Modified Compression-Field Theory による解析によって、その基本 的性状を把握した。また、Modified Compression-Field Theory による解析は実験結果を表現できることを確認 した。

【参考文献】

- [1] Michael P. Collins et al.: The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal / March-April, 1986, pp.219-231
- [2] 金久保利之: 多軸化を考慮した Modified Compression-Field Theory による解析,日本建築学会大会梗概集 C-2 構造IV, pp.511-512, 1998.9
- 佐藤裕一他:CFRP シートとコンクリートの付着挙動(その2). [3] 日本建築学会構造系論文集第 509 号, pp.127-134, 1998.7

*1 明石高専建築学科 助手·工博 Research Associate, Department of Architecture, Akashi National College of Technology, Dr. Eng.

*2 筑波大学機能工学系 講師·工博

Assistant Professor, Institute of Engineering Mechanics and Systems, University of Tsukuba, Dr. Eng.