論文 PVA-ECC 梁部材のせん断性能に関する実験研究

清水 克将*1・金久保 利之*2・閑田 徹志*3・永井 覚*4

要旨:PVA-ECC を用いた梁部材を対象として,大野式加力によるせん断実験を行った。実験 因子は PVA 繊維の体積混入率および肋筋の量である。加力実験の結果,すべての試験体で曲 げ降伏前にせん断破壊が見られ,肋筋の降伏および PVA-ECC のせん断ひび割れ幅の拡大に ともなって耐力が低下した。実験により得られた最大荷重は,PVA 繊維の体積混入率および 肋筋の量の増加にともなって増大した。最大荷重時の肋筋の歪はおおむね降伏歪に達してお り,数千µの歪が確認された試験体もあった。

キーワード:高靭性セメント複合材料, せん断強度, 肋筋歪, せん断ひび割れ

1. はじめに

高靭性セメント複合材料(以下,DFRCC)を 構造的要素として使用するために,鉄筋補強さ れたDFRCC部材の加力実験が行われている^{例え} ^{ば1)}。これらの実験では、制振デバイスや耐震壁、 境界梁と言った部材に着目した実験が行われて いることが多く,エネルギー吸収部材とした設 計が前提のため,部材実験でも曲げ降伏先行型 の試験体の結果が多い。一方で,DFRCC部材設 計のためには曲げ性状とともに部材のせん断性 状も重要であると考えられるが,現状では例え ばせん断設計をどのように行えばよいのか等, 不明な点も多い。本研究ではDFRCCとしてPVA 繊維を使用した Engineered Cementitious Composites (以下, PVA-ECC) に着目し, 鉄筋 補強したPVA-ECC梁部材を対象として,大野式 加力による逆対称モーメントせん断実験を行っ た。実験因子はPVA繊維の体積混入率および肋 筋の量である。

- 2. 使用材料
- 2.1 PVA-ECC

使用繊維は PVA で,体積混入率を 1.0,1.5, 2.0%とした。繊維の力学的性質(メーカー値) を表-1に,調合計画を表-2に示す。また,100 - 200mm シリンダーによる圧縮試験結果を 表 - 3 に示す。また比較のために目標強度 36MPa の普通コンクリートを使用した試験体 も計画した。普通コンクリートの調合計画,圧 縮試験結果もあわせて表中に示す。

表 - 1 使用繊維

禾湉	繊維長	繊維径	破断強度	弾性係数
个生犬只	(mm)	(mm)	(MPa)	(GPa)
PVA	12	0.04	1600	40

表 - 2 調合計画

名称	繊維体 積混入 率 (%)	水結合 材比 (%)	骨材結合 材比	計画 空気量 (%)
PVA10	1.0	42.7	0.74	10
PVA15	1.5	42.7	0.73	10
PVA20	2.0	42.7	0.71	10
NC	-	48.5	5.11	5.0

表 - 3 圧縮試験結果

種類	圧縮強度 (MPa)	圧縮強度時 歪 (%)	弾性係数 (GPa)
PVA10	37.3	0.35	17.8
PVA15	35.7	0.35	16.3
PVA20	39.1	0.36	19.5
NC	39.0	0.23	26.2

2.2 鉄筋

梁試験体の主筋には異形鉄筋 D13 (SD685)

*1 筑波大学大学院	理工学研究	〔科(正会員)		
*2 筑波大学講師 機	人能工学系	博士 (工学)(正会員)	
*3 鹿島建設(株)	技術研究所	f建築生産グル・	- プ上席研究員	Ph.D.(正会員)
*4 鹿島建設(株)	技術研究所	f建築構造グル・	ープ主任研究員	工修(正会員)

を, 肋筋には D4 を用いた。鉄筋の引張試験結 果を表 - 4 に示す。

	降伏	弾性	降伏	破断
名称	強度	係数	歪	伸び
	(MPa)	(GPa)	(µ)	(%)
D13 ^{*1}	719.7	190.5	3779	9.8
D13 ^{*2}	719.0	193.2	3721	14.5
D4 ^{*3}	294.5	192.7	1528	27.4
±1 DUA =-		*2 NO =+		*2 明な

表 - 4 鉄筋の引張試験結果

*1 PVA 試験体主筋 *2 NC 試験体主筋 *3 肋筋

3. 実験概要

3.1 試験体

試験体は断面が 180×280mm の矩形断面とし, せん断スパン比を 1.5 とした。PVA-ECC は繊維 混入率 1.0% (PVA10), 1.5% (PVA15), 2.0% (PVA20)の 3 種類とし,肋筋比 0.00%, 0.15%, 0.30%の試験体をそれぞれ製作した。また,普 通コンクリートを用いた試験体(NC)も同様の 3 種類の肋筋比で製作した。肋筋比 0.15%の試 験体の形状および配筋を図 - 1 に,試験体一覧 を表 - 5 に示す。いずれの試験体も曲げ破壊に 先行してせん断破壊するように計画した。

PVA 試験体の製作は, PVA-ECC 梁試験部分 を水平打設(加力方向直交方向:図中 が打設 方向)した後,スタブに普通コンクリートを打 設し製作した。PVA-ECC 試験部分のスタブ内に はコッターを設け,スタブとの一体性の確保に 努めた。なお普通コンクリートを用いた試験体 は一体打ちで製作した。

3.2 加力·計測方法

加力は大野式一方向載荷とし,加力梁を取り 付けた 2MN ユニバーサル試験機により加力を 行った。計測項目は全体変形,局部曲げ変形・

図 - 1 試験体形状·配筋図

表 - 5 試験体一覧

		· 混 λ	断面	せん新		肋筋	
┃試験体名 使用繊維	$V_f(\%)$	$b \times D$ (mm)	スパン比	主筋	配筋	$p_w(\%)$	
NC-00						-	0.00
NC-15	(普通コン	クリート)				2-D4@93	0.15
NC-30						2-D4@47	0.30
PVA10-00						-	0.00
PVA10-15		1.0			9 D12	2-D4@93	0.15
PVA10-30				1.5	s-D13 SD685 $p_t=2.43\%$	2-D4@47	0.30
PVA15-00						-	0.00
PVA15-15	PVA	1.5				2-D4@93	0.15
PVA15-30						2-D4@47	0.30
PVA20-00						-	0.00
PVA20-15]	2.0				2-D4@93	0.15
PVA20-30						2-D4@47	0.30

せん断変形,主筋歪,肋筋歪および荷重とした。 鉄筋歪の測定位置は,図-1中に示す である。

4. 実験結果

4.1 破壊性状

NC-30 試験体を部材角 1/33rad まで加力した 後のひび割れ状況と, PVA10-30, PVA15-30 お よび PVA20-30 試験体を 1/22rad まで加力した後 のひび割れ状況を図 - 2 に示す。なお,ひび割 れ状況におけるひび割れ線は部材角 1/100rad ま でに発生したひび割れを示す。いずれの試験体 においても,部材角 1/400rad 程度までに,曲げ ひび割れおよびせん断ひび割れが順次発生した。 PVA-ECC を使用した試験体では,複数ひび割れ が観察され,最大荷重以前において最大せん断 ひび割れ幅が NC 試験体に比べて小さい傾向に あり,ひび割れ幅抑制効果が見られた。最大強 度付近になると,PVA-ECC を用いた試験体にお いてもひとつのせん断ひび割れに変形が局所化 し始め,最大荷重に達すると耐力低下し,せん 断破壊した。変形の局所化が生ずると,他の位 置でのひび割れ幅は減少する傾向が観察された。 なお,全試験体において,主筋の降伏は確認さ れなかった。

図 - 2 ひび割れ状況

表 - 6	実験結果-	·覧
-------	-------	----

試験体名	ひび割れ発生荷重		最大荷重	最大荷重 時部材角	せん断終 局強度
	囲け	せん断	(KN)	$(\times 10^{-3} \text{rad})$	計昇個
	(kN)	(kN)			(kN)
NC-00	43.6	97.5	116.4	5.05	78
NC-15	36.9	69.4	104.8	6.93	98
NC-30	41.9	74.3	132.3	12.01	117
PVA10-00	26.1	66.7	123.9	6.44	76
PVA10-15	20.4	55.3	144.8	8.07	95
PVA10-30	18.8	60.5	171.5	11.75	115
PVA15-00	31.1	66.6	142.8	9.11	74
PVA15-15	42.4	63.7	169.7	11.01	93
PVA15-30	27.9	123.7	182.9	11.64	113
PVA20-00	17.0	36.3	182.7	10.90	78
PVA20-15	20.8	33.0	205.8	13.82	98
PVA20-30	19.8	90.6	208.6	12.62	117

4.2 最大荷重

表 - 6 に実験結果一覧を示す。なお,せん断 終局強度計算値は日本建築学会終局強度型設計 指針 A 法によるせん断強度(PVA-ECC 試験体 は,圧縮強度が等しい鉄筋コンクリート梁部材 と仮定して算出)により算出した。また,各試 験体の最大荷重実験値を比較して,図-3 に示 す。

肋筋のないPVA15-00 およびPVA20-00 試験体 の最大荷重は,肋筋比p_w=0.30%のNC-30 の最大 荷重を上回っており,繊維混入によるせん断補 強効果が認められた。また,繊維混入率の増加 および肋筋比の増加にともない最大荷重が増加 する傾向が見られた。肋筋比の増加による最大 荷重の増加割合はPVA試験体間で同程度に,また繊維混入率の増加による最大荷重の増加割合 も各肋筋比試験体間で同程度になっている。

図-3 最大荷重の比較

4.3 せん断力 - 部材角関係

全試験体のせん断力 - 部材角関係を図 - 4 に 示す。図中には,曲げひび割れ,せん断ひび割 れ発生点,肋筋降伏点,最大荷重点を示した。 初期剛性は NC 試験体が高く,ひび割れ発生後 の剛性は PVA 試験体のほうが高い。最大荷重時 の部材角はおおむね 1/100rad 程度である。PVA 試験体では最大荷重以降耐力低下が見られ,せ ん断ひび割れの拡大,変形の局所化に対応して いる。肋筋の降伏は,PVA 該当試験体 6 体中 4 体で最大荷重到達前に観察された。なお,肋筋 の歪も変形の局所化にともない一端増加した後 減少する場合が見受けられた。

4.4 肋筋の歪

各試験体の肋筋の歪分布を図 - 5 に示す。な お,図中の破線は肋筋の材料試験結果より得ら れた降伏歪であり,グラフ横軸のゲージ位置は 梁試験区間左端からの距離を示している。

ほとんどの試験体で最大荷重時において降伏 歪に達している箇所が見られ,その位置は梁端 から 100 ~ 300mm であった。最大荷重時の歪は 降伏が見られた試験体で,おおよそ 3000 ~ 7000 µであった。また,最大荷重時後の 1/50rad の 歪分布では,歪値が減少する箇所が多く見受け られた。 5. まとめ

PVA-ECC を用いた梁部材のせん断実験を行なった結果,以下のような知見を得た。

- 1) 全試験体とも, PVA-ECC のせん断ひび割れ 幅の拡大, 変形の局所化にともなって耐力 が低下した。
- 2) 肋筋のないPVA試験体の最大荷重は, 肋筋 比p_w=0.30%の普通コンクリート試験体の最 大荷重を上回っており, 繊維混入によるせ ん断補強効果が認められた。
- 3)最大荷重は肋筋量および繊維混入量の増加 にともない上昇する。
- 4) 肋筋の歪は,最大荷重時でおおよそ3000~ 7000µであった。

謝辞

実験の実施にあたっては,筑波大学大学院八 十島章氏の協力を得た。

参考文献

 H. Fukuyama, H. Suwada, Y. Ilseung : HPFRCC Damper for Structural Control, Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC 2002), pp.219-228, 2002.10