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1  INTRODUCTION 

Sensitivity analysis by theoretical bond behavior 
used bond laws is examined as one of the activities 
of the Japan Concrete Institute Technical Committee 
on Bond Behavior and Constitutive Laws in Rein-
forced Concrete. This paper investigates the influ-
ence of local bond stress-slip relationship on macro-
level bond behavior and bond strength by conduct-
ing parametric analysis based on the theoretical solu-
tions derived from the second order differential equ-
ation and bond stress-slip models, which is based on 
force equilibrium and strain compatibility condi-
tions. Local bond stress-slip models, bond length, 
elastic modulus of reinforcing bar and of concrete, 
reinforcing bar diameter, concrete cross-sectional 
area and bond fracture energy are adopted as the fac-
tors. In tensile specimen and pullout specimen, the 
influences of these factors on bond stress distribu-
tion, reinforcing bar tensile force distribution, slip 
distribution and bond strength of pullout specimen 
are evaluated. 

The differential equations governing the bond be-
havior of a single bar embedded in concrete member 
(Figure 1) can be summarized as follows, assuming 
axial symmetry with respect to bar axis. Equation 1 
expresses equilibrium in reinforcing bar, and Equa-
tion 2 expresses strain-displacement relation, and 
Equation 3 expresses equilibrium in reinforced con-
crete. Thus the second order differential equation 
with respect to the slip is derived from Equation 1, 2 
and 3, as represented by Equation 4. 
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Where  Psx= the reinforcing bar force at x,  Pcx= the 
concrete force at x, Pso= the reinforcing bar force at 
x = 0, Pco= the concrete force at x = 0, Es =the elastic 
modulus of the reinforcing bar, As= the reinforcing 
bar area, Ec= the elastic modulus of the concrete, 
Ac= the concrete cross-sectional area, n= the ratio of 
the elastic modulus (= Es/Ec),  p= the ratio of 
area(=As/Ac), and φs= the reinforcing bar perimeter. 
 

 
 
Figure 1. Bond behavior on a minute length of reinforcing bar. 
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(A) Perfect rigid-plastic model    (B) Linear model        (C) Parabolic model 
Figure 2. Bond stress-slip models. 

Table 1. Analyzed specimens and boundary conditions. 
Target specimens Boundary conditions

Tensile 
specimen 

soso PP ′= and 0=′= coco PP

Lx = : SLS x Δ=)(

0=x : sos PP =)0( (given value)*

Lx = : )1()( npnpPLP sos +⋅=

Pullout 
specimen 

coso PP −=  and 0=′=′ coso PP

blx = : fbx SlS =)( (given value)*

blx = : 0)( =bs lP

blx = : 0)( =bc lP
* The tensile force of the loaded end ( soP ) and the slip of the free end ( fS ) are arbitrary (input values). 

Table 2. Theoretical solution for perfect rigid-plastic model in tensile specimen. 
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2 ANALYSIS METHOD 

2.1 Bond stress-slip model 
To conduct sensitivity analysis by theoretical solu-
tion and numerical calculation based on the second 
order differential equation with respect to the slip, 
the three bond stress-slip models are used as, illu-
strated in Figure 2. They are (A) the perfect rigid-
plastic model, (B) the linear model, and (C) the pa-
rabolic model, defined by the local bond strength 
(τm), the bond stiffness (k), and the ultimate slip (Su). 

2.2 Analyzed specimens 
Specimens for sensitivity analysis are the two types. 
One is a tensile bond specimen with long bond 
length, and the other is a pullout bond specimen with 

bond length (lb). The tensile bond specimen is anc-
hored at the position of x = L from the end of mem-
ber, and the slip at that position is set as ΔS = 
0.001mm which is close to zero. The outline of ana-
lyzed specimens and the boundary conditions on the 
reinforcing bar force, the concrete force and the slip 
are shown in Table 1. 

2.3 Theoretical solution 
The theoretical solutions of Equation 4 using the 
three bond stress-slip model (the perfect rigid-plastic 
model, the linear model, and the parabolic model) 
are shown Table 2, 3, 4, 5, and 6. In the pullout bond 
specimen, the parabolic model cannot solve Equa-
tion 4 mathematically. Therefore, the theoretical so-
lution for pullout specimen by the parabolic model is 
not shown. 
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Table 3. Theoretical solution for perfect rigid-plastic model in pullout specimen.
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Table 4. Theoretical solution for linear model in tensile specimen. 
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Table 5. Theoretical solution for linear model in pullout specimen. 
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Table 6. Theoretical solution for parabolic model in tensile specimen. 
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Figure 3. Bond stress-slip model, Bond stress distribution, Tensile force distribution and Slip distribution in tensile specimen.
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The solution method used for the parabolic model 
in the pullout specimen is the sequential integration 
method in which numerical calculations are per-
formed base on force equilibrium and deformation 
compatibility conditions, assuming that local bond 
stress of the infinitesimal length is constant. 

3 RESULTS OF SENSITIVITY ANALYSIS 

3.1 Bond behavior in tensile specimen 
The bond behavior results obtained by the each 
models are shown in Figure 3 and Figure 4, which il-
lustrates the models and factors, bond stress distribu-
tion, reinforcing bar tensile force distribution, and 
slip distribution with distance from the loaded end of 
tensile specimen. The specifications of analysis fac-
tors are set as the cross section of specimen 100mm 
× 100mm or 300mm × 300mm which contains de-
formed bar D10 or D19 in the center (elastic mod-
ulus, Es = 200GPa), the elastic modulus of the con-
crete Ec = 20GPa or 40GPa, local bond strength 
10MPa or 20MPa, bond stiffness 20MPa/mm or 
40MPa/mm, ultimate slip of the parabolic model 
0.5mm or 1.0mm. 

From the bond behavior obtained by the each 
model, the linear model and the parabolic model 

give similar distributions of bond stress and of ten-
sile force, however, the bond stress of parabolic 
model at Pso = 46 kN decreases near the loaded end 
in the left side distributions of Figure 3, and all 
models give similar shape of slip distribution except 
the value of slip at the loaded-end. In the perfect ri-
gid-plastic model, it is confirmed that bond stress 
distribution is constant, tensile force distribution is 
linear, slip distribution is parabolic, and each distri-
bution is confined to the limited length of the rein-
forcing bar. 

When the local bond strength and the bond stiff-
ness vary, the region where the bond stress occurs 
significantly varies in all the models and the bond 
stress and the slip near loaded end change; however, 
the shapes of tensile force distribution and of slip 
distribution vary little among the linear model and 
the parabolic model. 

It is confirmed that the cross sectional area of the 
specimen and the elastic modulus of concrete don’t 
affect the respective distributions. 

In case of the specimen cross section 300mm × 
300mm which contains deformed bar D19 in the 
center, the perfect rigid-plastic model and the para-
bolic model give relatively similar distributions of 
bond stress and of tensile force, and the shape of slip 
distribution is similar for all the models except the 
loaded-end slip. 
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Figure 4. Bond stress-slip model, Bond stress distribution, Tensile force distribution and Slip distribution in tensile specimen.
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3.2 Bond behavior in pullout specimen 
The analysis results of bond behavior obtained by 
the each models are shown in Figure 5, which illu-
strates the models and factors, the relationship be-
tween loaded-end tensile load and loaded-end slip, 
bond stress distribution, reinforcing bar tensile force 
distribution, and slip distribution with distance from 
the loaded end of pullout specimen. The bond beha-
vior results for the parabolic model are obtained by 
numerical calculations. 

The specifications of analysis factors are set as 
the cross section of specimen 100 mm × 100 mm or 
300 mm × 300 mm which contains deformed bar 
D10 or D19 in the center (elastic modulus, Es = 
200GPa), the elastic modulus of the concrete Ec = 
20GPa or 40GPa, bond length lb = 200mm or 
400mm, local bond strength 10MPa or 20MPa, bond 
stiffness 20MPa/mm or 40MPa/mm, and ultimate 
slip 0.5mm. 

In comparison with relationship between the ten-
sile load and the loaded-end slip calculated by the 
each model, the tensile load appears to be related to 
the shape of the local bond stress-slip relationship, 
as the perfect rigid-plastic model has the highest 
maximum tensile load, followed by the parabolic 
model and, finally, the linear model. 

From the bond behavior results obtained by the 
each model, the bond stress distribution differs 
among the models, and the length where the bond 
stress occurs is influenced by the local bond stress-
slip model. However, the slip distribution is similar 
for all models, and the tensile force distribution 
comes to be alike as the free-end slip becomes larg-
er. 

When the local bond strength for the each model 
doubles from 10MPa to 20MPa, the maximum ten-
sile load increases about 1.5 times in all the models 
and the slip near the loaded-end increases signifi-
cantly, and it is confirmed that the cross sectional 
area of the specimen and the elastic modulus of con-
crete don’t affect the respective distributions. 

In case of the specimen cross section 300 mm × 
300 mm which contains deformed bar D19 in the 
center, the perfect rigid-plastic model and the para-
bolic model give similar distributions of bond stress 
and of tensile force, and the slip distribution is quite 
similar for all the models. It is confirmed that the in-
crease of bond length from 200mm to 400mm caus-
es the location of the peak bond stress to shift to-
ward the free end of the reinforcing bar, the 
distribution of tensile force near the loaded end to 
remain constant, and the slip near the loaded end to 
increase. 
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Figure 5. Bond stress-slip model, Loaded-end tensile load versus loaded-end slip curve, Bond behavior in pullout specimen. 
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(a) Maximum tensile load versus bond length 

(b) Maximum tensile load versus diameter of reinforcing bar 

(c) Maximum tensile load versus elastic modulus of reinforcing bar for each model 

(d) Maximum tensile load versus bond fracture energy 

Figure 6. Maximum tensile load in pullout specimen. 
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3.3 Bond strength in pullout specimen 
To investigate the influence of local bond characte-
ristics and various other factors on maximum tensile 
load of pullout specimen, sensitivity analysis is per-
formed by using each model. Investigated factors are 
bond stress-slip model, bond length, reinforcing bar 
diameter, elastic modulus of reinforcing bar and 
bond fracture energy. The relationship between max-
imum tensile load and bond length, reinforcing bar 
diameter, elastic modulus of reinforcing bar, and 
bond fracture energy for each model are shown in 
Figure 6. In addition, the specifications of analysis 
factors are shown in Figure 6. In case of the investi-
gation of bond fracture energy, similarity shape for 
all bond stress-slip models are used. The maximum 
tensile load for the perfect rigid-plastic model and 

the linear model is obtained by theoretical solution, 
whereas for the parabolic model one is obtained by 
numerical calculation. The theoretical equations of 
the maximum tensile load using the perfect rigid-
plastic model and the linear model in pullout speci-
men are as shown blow. 
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bond strength, k = bond stiffness, Su = ultimate slip, 
and lb = bond length. 

The maximum tensile load increases linearly up 
to about 200mm bond length, and remains constant 
as bond length becomes longer. In case of longer 
bond length, the perfect rigid-plastic model gives the 
highest maximum tensile load, followed by the pa-
rabolic model and, finally, the linear model, and also 
main features are similar to those for various rein-
forcing bar diameter. As the diameter of reinforcing 
bar sizes up, the maximum load increases linearly in 
case of shorter bond length and one increases nonli-
nearly in case of longer bond length. The maximum 
tensile load is proportional to square root of bond 
fracture energy and the elastic modulus of reinforc-
ing bar. 

When the bond length is sufficiently large and the 
concrete deformation is negligibly small, the maxi-
mum tensile load can be expressed by bond fracture 
energy, reinforcing bar perimeter, reinforcing bar 
area and elastic modulus of the reinforcing bar, as 
shown in Equation 7. (Asano et al. 2008) 

np
GAE

P fbsss
max +

⋅⋅⋅⋅
=

1
2 φ  (7) 

Where Gfb = bond fracture energy, which expressed 
as (A) Perfect rigid-plastic model: umfb SG ⋅= τ ,
(B)Linear model: umfb SG ⋅⋅= τ)21( , (C) Parabolic 
model: umfb SG ⋅⋅= τ)32( .

In addition, the condition of bond length for max-
imum tensile load to achieve the value of Equation 7 
can be expressed roughly as shown in Equation 8, 
which is derived from Equation 5. (Yasojima et al. 
2003) Furthermore, the right-hand side in Equation 8 
(i.e. the effective bond length) is defined as the re-
gion where comparatively effective bond stress dis-
tributes. 

The effective bond length computed with the 
analysis specifications for reinforcing bar diameter 
D10 in Figure 6(a) is 211mm for the perfect rigid-
plastic model, 298mm for the linear model, and 
258mm for the parabolic model. It is confirmed that 
the maximum tensile load is constant in the bond 
length beyond those. 

fbs

ss
ub Gnp
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Where lb = bond length, Gfb = bond fracture energy 
( um S⋅= τ ), Su = ultimate slip, Es = elastic modulus of 
reinforcing bar,As= reinforcing bar area, φs= perime-
ter of reinforcing bar, n= ratio of the elastic mod-
ulus(= Es/Ec), p= ratio of area (=As/Ac), Ec= elastic 
modulus of concrete, Ac= concrete cross-sectional 
area. 

4 SUMMARY AND CONCLUSIONS 

Sensitivity analytical results in tensile specimen 
show that the influence of differences of local bond 
stress-slip model is relatively small for the linear 
model and the parabolic model, and the shape of slip 
distribution for all the models is similar. 

Sensitivity analytical results in pullout specimen 
show that the influence of differences of local bond 
stress-slip model is relatively small in the distribu-
tion of tensile force and of slip, and the bond stress 
distribution differs among the models. 

When the local bond strength and the bond stiff-
ness vary, the length where the bond stress occurs 
significantly varies in all the models, and it is con-
firmed that the cross sectional area of specimen and 
the elastic modulus of concrete don’t affect the re-
spective distributions and the maximum tensile load. 

The maximum tensile load in pullout specimen is 
mainly influenced by bond fracture energy, reinforc-
ing bar perimeter, reinforcing bar area and elastic 
modulus of the reinforcing bar, which is proportion-
al to square root of bond fracture energy and the 
elastic modulus of reinforcing bar, and becomes 
constant as bond length increases. 
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