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1  SURVEYED LITERATURE 

Literature on bond problems is surveyed as one of 
the activities of the Japan Concrete Institute Tech-
nical Committee on Bond Behavior and Constitutive 
Laws in Reinforced Concrete. The committee se-
lected 345 papers from 11 journals published in the 
United States of America, Germany, Austria, and 
Japan from the late 19th century to the early 21st 
century. These papers mostly discuss on relation-
ships between bond stress and slip although several 
papers deal with testing methods, analysis methods, 
and design guidelines. Table 1 is a summary of the 
surveyed journals. 

Austria and Germany began to pioneer the re-
search and development of reinforced concrete engi-
neering when Matthias Koenen (1849-1924) initially 

proposed the flexural analysis method of RC beams 
in 1886 (Koenen 1886). The RC techniques were al-
so quickly applied to large, high-rise structures in 
the USA. Supposedly, bond tests had been con-
ducted by individual engineers beginning in the late 
19th century although the first technical paper about 
bonds appeared in 1905.  

Abrams, University of Illinois at Urbana, men-
tioned that Thaddeus Hyatt (1816-1901) conducted 
tests to determine the bonds between concrete and 
iron bars as early as 1876 (Abrams 1913). America 
and Germany still lead the world in RC investiga-
tions including bond research. Austria made impor-
tant contributions as well, especially during the early 
periods of RC history. In addition, significant re-
search activities were performed in Japan after the 
1960s. 

 
Table 1. Surveyed journals. 

Abbreviation Journal            Period Country Number of papers

ACI Journal of the American Concrete Institute 1905-1986 USA 100 Structural Journal of the ACI 1987-2010 USA 

ASCE 
Transactions of the American Society of Civil Engineers 1872-1940 USA 

89 Proceedings, ASCE, Structural Division 1939-1982 USA 
Journal of Structural Engineering, ASCE 1983-2010 USA 

AIV                      Zeitschrift für Architektur und Ingenieurwesen                         1901-1906 Germany 2 

BS 
Beton und Eisen 1905-1942

Germany 36 Beton- und Stahlbetonbau 1943-1945 
1950-1982

BI Bauingenieur 1920-1996 Germany 5 

DAfStb Deutscher Ausschuss für Eisenbeton 1911-1938 Germany 39 Deutscher Ausschuss für Stahlbeton                                          1938-2005

ÖIAZ Zeitschrift des Österreichischen Ingenieur- und Architek-
ten-Vereins 1859-1910 Austria 15 

JSCE Journal of the Japan Society of Civil Engineers  1933-2009 Japan 10 

AIJ Transactions of the Architectural Institute of Japan 1967-1984 Japan 12 Journal of Structural and Construction Engineering 1985-2008
JCIa Proceedings of the Japan Concrete Institute 1983-2009 Japan 23 
JCIb Concrete Research and Technology 1982-2002 Japan 5 
--                          Other papers (listed in references)                                                                                               9 
Total 345
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Early RC technical papers were contributed to gen-
eral engineering journals or general civil engineering 
journals. Such papers were then contributed to RC 
journals, which were founded in the early 20th cen-
tury such as Beton und Eisen (1901) and Proceed-
ings of the American Concrete Institute (1905). The 
following sections describe bond-related papers pub-
lished in each decade.  

Figure 1 lists the number of papers surveyed. The 
papers are designated as “Author/Year/Journal Ab-
breviation/Volume/Pages”(ex. Graf/1940/DAfStb/94 
/1-55,Giuriani/1991/ASCE /117 /1-18). 
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Figure 1. Number of surveyed papers. 

2 BACKGROUND RESEARCH IN THE LATE 
19TH CENTURY 

Wayss & Freytag, an Austrian construction company 
with which M. Koenen was affiliated, pioneered in 
the development of RC techniques. The engineers of 
Wayss & Freytag made many contributions to Zeit-
schrift des Österreichischen Ingenieur- und Archi-
tekten-Vereins. Thullie, for example, refined the me-
thod of flexural analysis by introducing a bilinear 
stress-strain relationship of concrete under compres-
sion as well as a linear relationship under tension 
(Thullie/1897/ÖIAZ/18/193-197). 

Iron reinforcement was gradually replaced with 
steel bars, not only in Austria and Prussia, but also 
in the USA. Wide-ranging discussions on construc-
tion, allowable stresses, elastic moduli of concrete, 
reinforcement ratios, reinforcement arrangements, 
temperature effects, and cast works were published 
in Transactions of the ASCE (Buck et 
al./1901/ASCE//93-128). 

3 1900S 

Wilhelm Ernst & Sohn, a publisher in Berlin, 
founded a journal on reinforced concrete, “Beton 
und Eisen.” Beton und Eisen was later renamed Be-
ton und Stahlbetonbau. It continues to publish today. 

In 1904, the Ministry of Public Works of the Prus-
sian Government established the world’s first RC 
design provisions (Ministerium für öffentliche Ar-
beiten 1904). This guideline specified allowable 
bond stress as being 4.5 kgf/cm2 as well as tensile 
reinforcement stress at 1200kgf/cm2, compressive 
concrete stress at 0.2 f‘c, shear stress at 4.5 kgf/cm2, 
and the elastic modulus ratio of steel to concrete at 
15. 

The guideline was revised in 1907 and 1916 (Mi-
nisterium für öffentliche Arbeiten 1907, Ministerium 
für öffentliche Arbeiten 1920) and assimilated as 
part of the German Industrial Standards (DIN 0145) 
in 1925. 

The first technical paper on bond testing was con-
tributed by Carl von Bach in 1905 (Fig. 2; Bach 
1905). The bond test used a concrete block measur-
ing 220 mm3 with steel bars of varied diameters (8 
mm to 40 mm) and embedded lengths (100 mm and 
300 mm), and estimated the relationships between 
bond force and slip displacement. 

Koenen, Wuczkowski, and Löser considered 
bond splitting prevention along the longitudinal rein-
forcements in beams and estimated the required cov-
er thickness and reinforcement spacing (Koe-
nen/1905/BS/6/148-149, Wuczkowski/1908/BS 
/3/60-61, Löser/1908/BS/14/345-347). Doucas dis-
cussed the stress transfers between concrete and 
reinforcements based on an assumption of linear 
bond stress distribution (Doucas/1908/BS/9/215-
222). 

In 1907, Beton und Eisen introduced deformed 
reinforcements made in the USA (1907/BS/2/55, 
1907/BS/3/84, 1907/BS/5/136). Patents for bond en-
hancement were submitted in Wien and Berlin in 
1907. The former proposed rings arranged along the 
bar (Grimm/1907/ÖIAZ/20/380) while the latter 
proposed T-shaped reinforcement with a waved web 
(Franke/1907/ÖIAZ/20/380). 
 

 
Figure 2. Bach’s bond test in 1905 (Bach 1905; Illustration by 
Schenkel 1998). 

It is thought that the first use of a differential equa-
tion for solving an interfacial bond problem in the 
civil engineering field, though not for RC, was 
Arnovljević’s paper on the lap joint problem of iron 
plates in 1909 (Fig. 3; Arnovljević 1909). A second-
order differential equation is derived based on an as-
sumption of a continuous distribution of the interfa-
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cial shear force between welded or riveted iron 
plates. Equation 9 in Figure 3 expresses the differen-
tial equation with respect to the tensile stress of the 
iron plate σx. A linear relationship between the rela-
tive slip δx and the shear stress τx is assumed (Equa-
tion 5 in Fig. 3; u = width of plate, T = shear stiff-
ness). The solution expressed by the hyperbolic 
functions (Equation 12 in Fig. 3) was derived, al-
though no calculation example was presented. 

 

 

 
Figure 3. Derivation of second-order differential equation by 
Arnovljević (1909). 

4 1910S 

Carl von Bach and Otto Graf, principal professors at 
Stuttgart Institute of Technology, conducted tests on 

RC beams to estimate the effectiveness of anchors, 
lap splices, and diagonally bent longitudinal rein-
forcements. The test results were provided as seven 
large reports to the Deutscher Ausschuss für Eisen-
beton during 1911 and 1917 (Bach/1911/DafStb 
/9/1-86, Bach/1911/DafStb/10/1-132, Bach/1911 
/DafStb/12/1-205, Bach/1912/DafStb/20/1-122, 
Bach/1913/DafStb/A/1-31, Bach/1913/DafStb/24/1-
26, Bach/1917/DafStb/38/1-78). These works 
formed the basic method of measuring bond slip in 
RC members. In the US, the influence of bond slip 
on the reduction of flexural stiffness of beams was 
discussed by Scott (Scott/1911/ASCE/73/230-325). 
Duff Abrams conducted important bond research at 
the University of Illinois at Urbana during the 1900s 
and 1910s (Abrams 1913). The tests consisted of 
1499 pull-out specimens (approximately 200 mm3) 
and 110 beam specimens for bond creep observa-
tions (Fig. 5; 200 mm by 300 mm cross section). In-
fluences of nine types of deformed reinforcements, 
concrete strength, curing condition, and loading 
condition were discussed. A number of empirical re-
lationships between bond stress and slip and bond 
stress distributions along the beams were reported. 

 
Figure 4. Bond slip measuring by Bach and Graf 
(Bach/1911/DAfStb/9/1-86). 

 
Figure 5. Bond creeps in beams (Abrams 1913). 
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A special committee on concrete and reinforced 
concrete established by six American associations 
including ASCE and ACI issued a final report in 
1917 (ASCE/1917/81/1101-1206). This was the first 
American design guideline for RC. The report con-
sisted of ten sections. Chapters 7 and 8 contained 
suggestions about bond strength and the spacing of 
reinforcements. For example, 
1. A deformed bar is recommended when high bond 

strength is required although it should be noted 
that slip will occur at early loads. 

2. Anchorage with 90° bends is less effective than 
with a 180° hook. 

3. The lateral spacing of parallel bars should not be 
less than three diameters from center to center. 

4. The cover thickness should not be less than two 
diameters. 

5. The clear space between two layers of bars 
should not be less than 1 inch. 

6. The bond strength of the round bar is assumed as 
4% of the compressive concrete strength. 

7. The bond strength of the drawn wire in the slab is 
assumed as 2% of the compressive concrete 
strength. 

8. The bond strength of the deformed bar is assumed 
as 5% of the compressive concrete strength. 

5 1920S -1930S 

Emperger conducted pull-out tests with a variety of 
anchorage hook angles (Emperger/1935/BS/12/197-
200) and different kinds of reinforcements including 
round bars and coupled twisting bars (Emperger/ 
1938/BS/2/31-33). Abeles, a researcher in Wien, 
measured reinforcement strains and crack widths 
along four-point loaded beams with dial gauges (Fig. 
6; Abeles/1937/BS/17/282-287). Gilkey, Iowa State 
University, conducted pull-out tests and flexural 
beam tests (Gilkey/1938/ACI//1-20) while Shank, 
Ohio State University, investigated bond creep 
(Shank/1938/ACI//81-90). Gilkey also employed 
many dial gauges to measure concrete strain. 

At The University of Tokyo, Japan, Fukuda at-
tempted to analyze bond stress distributions using a 
differential equation derived from the equilibrium 
and compatibility conditions of the bonding inter-
face (Fig. 7; Fukuda/1933/JSCE/19_3/201-212). In 
the shrinkage example shown in Figure 7, it is sug-
gested that the stresses of the reinforcement and the 
concrete would be underestimated by 45.4% if the 
bond action had been neglected. 

6 1940S 

Graf invented a cantilever specimen to simulate the 
anchorage behavior of diagonally bent, longitudinal 
reinforcements (Fig. 8; Graf/1940/DAfStb/94/1-55). 

The cantilever specimens were later used for not on-
ly anchorage tests but also for bond tests by RC re-
searchers throughout the world. Emperger continued 
the precise measuring of bond behaviors through 
pull-out tests and four-point flexural beams (Em-
perger/1940/BS/7/91-99, Emperger/1940/BS/8/106-
109). Since the 1930s, new kinds of deformed bars 
had been under development in America. Seven 
presentations on bond tests of new kinds of de-
formed bars were submitted to the ACI Journal 
(Watstein/1941/ACI//37-50, Watstein/1945/ACI// 
293-304, Kluge/1945/ACI//13-33, Clark/1946/ACI// 
281-400_9, Watstein/1947/ACI//1041-1052, Col-
lier/1947/ACI//1125-1133, Clark/1949/ACI//161-
184). All these studies were performed at the Na-
tional Bureau of Standards (NBS). The tests used 17 
kinds of bars (Fig. 9); influences of casting direction 
and air ratio were also discussed. 
 

 
Figure 6. Strain measuring instrumentation of Abeles’ test 
(Abeles/1937/BS/17/282-287). 

 
Figure 7. Example calculations by Fukuda (Fukuda 1933). 

 
Figure 8. Cantilever specimen invented by Graf 
(Graf/1940/DAfStb/94/1-55). 
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Figure 9. Deformed bars tested at the NBS during the 1940s 
(Clark/1949/ACI//161-184). 

7 1950S 

Hognestad, University of Illinois at Urbana, initiated 
the application of strain gauges for the strain mea-
surement of steel reinforcements (Hognestad/1950/ 
ACI//445-454). Hognestad also tested the influence 
of air ratio on bonds (Hognestad/1950ACI//649-
667). Peatile, University of Nottingham, conducted 
torsion bond tests with concrete material of varied 
ages (Peatile/1956/ACI//661-672). Chi, NBS, ob-
served the crack widths of beams reinforced with de-
formed bars (Chi/1958/ACI//865-878).  

Bufler, a doctoral candidate at the Munich Insti-
tute of Technology, measured bond stress distribu-
tions along reinforcements made of glass fiber rods 
or duralumin embedded in an epoxy resin block 
(Bufler/1958/BI/33/382-388). Using a photoelastic 
device, Bufler computed bond stresses and slips by 
differential equations. Amstutz, at ETH Zurich, used 
strain gauges to measure bond stress distributions 
(Fig. 10; Amstutz/1955/BI/30/353-359). A minimum 
cover thickness regulation was added to the provi-
sions of DIN 1045, which was revised in 1959. 

 
 

 
 
 
 (a) Specimen (b) Distributions of steel stress and 

bond stress 
 
Figure 10. Bond test using strain gauges at ETH (Ams-
tutz/1955/BI/30/353-359). 

8 1960S 

In 1961, Rehm, Munich Institute of Technology, 
contributed an analytical study of bonds to Deutcher 
Ausschuss für Stahlbeton (Fig. 11; 
Rehm/1961/DAfStb/138/1-59). The analyses were 
conducted with various boundary conditions and vi-
sualized with precise figures. Rehm continued the 
bond research with Rüsch, preparing a number of 
four-point flexural beams reinforced with round and 
deformed bars up to 1964 
(Rüsch/1963/DAfStb/140/1-182, Rüsch/1963/ 
DAfStb/160/1-82, Rüsch/1964/DAfStb/165/1-52). 

At around the same time, Leonhardt and Walther, 
Stuttgart Institute of Technology, began 
shear/flexural tests of beams reinforced with round 
and deformed bars. Leonhardt had contributed 13 
papers to Beton und Stahlbeton during 1962 and 
1965 (Fig. 12; Leonhardt/1962/BS/2/32-44, etc.). 
 

 
Figure 11.  Bond tests and analyses by Rehm 
(Rehm/1961/DAfStb/138/1-59). 

 
(a) Beam with deformed bars 

 
(b) Beam with round bars 

Figure 12. Leonhardt’s beam specimens (Leon-
hardt/1962/BS/2/32-44). 

In America, in the early 1960s, the application of 
high strength steels to RC began. Bonds of 700 
MPa-class (100 ksi-class) reinforcements were 
tested at NBS (Mathey/1961/ACI//1071-1090, Fer-
guson/1962/ACI//887-922, Ferguson/1965/ACI//933 
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-950). Ngo and Scordelis, University of California at 
Berkley, developed a finite element algorithm based 
on the discrete crack model and demonstrated the 
stress distributions of cracked beams 
(Ngo/1967/ACI//152-163). Ngo’s research was the 
initial attempt to use a bond link element to model 
bond behavior along reinforcements. 

Nilson, Cornel University, also simulated crack 
propagations based on the discrete crack model (Nil-
son/1968/ACI//757-766). In this analysis, bond 
stress distributions caused by new cracking were es-
timated. Bresler of UCB analyzed the repeated cyc-
lic behaviors of uniaxial tension specimens (Bres-
ler/1968/ASCE/ST5/1567-1590). Apart from the 
discrete crack approaches instituted by the above re-
searchers, Rashid, Gulf General Atomic, developed 
the smeared crack model for RC structures (Rashid 
1968). 

The activities in Germany and America motivated 
Japanese bond research. Muguruma, Kyoto Univer-
sity, proposed a nonlinear bond stress-slip model 
and computed the bond behaviors of uniaxial tension 
specimens based on the differential equations of the 
bond problem (Muguruma/1967/AIJ/131/1-8, Mugu-
ruma/1967/AIJ/132/1-6, Muguruma/1967/AIJ/ 
134/1-8). 

9 1970S 

Nilson cut a steel bar in half and made a groove 
along its length so that strain gauges could be em-
bedded. This new instrumentation method success-
fully resulted in excellent observations of bond 
stress distributions (Nilson/1972/ACI//439-441). 
Martin attempted to visualize concrete stress distri-
bution around a deformed bar by using a photoelas-
ticity technique and proposed a ring tension model 
(Martin/1973/DAfStb/228/1-50). Tepfers, Chalmers 
University of Technology, also developed a ring ten-
sion model (Tepfers 1973). 

In the 1970s, in America, the utilization of epoxy-
coated steel bars began and many related studies of 
bonds were conducted. Mathey and Clifton, NBS, 
reported bond test results of epoxy-coated rein-
forcements in the ASCE Journal (Mathey/1976/ 
ASCE/ST1/215-229, Clifton/1979/ASCE/ST10/ 
1935-1947). 

Dörr compared a number of bond stress-slip mod-
els that had been proposed in 16 reports and pre-
sented significant differences between them 
(Dörr/1974/DAfStb/238/29-102). 

Losberg conducted bond splitting tests and pre-
sented classifications of bond splitting patterns 
(Losberg/1979/ACI//5-18). Eligehausen and Rehm, 
Stuttgart University (former Stuttgart institute of 
Technology), conducted finite element analyses of 
bond splitting behavior around lap splices (Fig. 13; 
Eligehausen/1979/DAfStb/300/13-38). 

Goto, Tohoku University, Japan, attempted to vi-
sualize microcracks around reinforcements by inject-
ing red ink into voids formed by cracks inside a con-
crete block (Fig. 14; Goto/1971/ACI//245-251). 
Morita, Kyoto University, developed a hysteresis 
model of bond stress-slip relationships based on cyc-
lic push/pull tests (Morita/1975/AIJ/229/15-24). 
 

 
Figure 13. FE analysis of lap splice by Eligehausen (Eligehau-
sen/1979/DAfStb/300/13-38; Illustration by Schenkel 1998). 

 
Figure 14. Visualization of microcracks around a reinforcement 
(Goto/1971/ACI//245-251). 

10 1980S 

Filippou and Popov, UCB, studied bond behaviors in 
beam-column joints during the 1980s (Filip-
pou/1983/ASCE/109/2666-2684, Popov/1984/ACI// 
340-349, Fig. 15; Filippou/1986/ASCE/112/937-
942, Filippou/1986/ASCE/112/1605-1622). The 
bond problem of the beam-column joint was one of 
the major concerns during the 1980s and many con-
tributions were made by Harajli, American Universi-
ty of Beirut, (Harajli/1988/ASCE/114/2017-2035), 
Leon, University of Minnesota, (Leon/1989/ 
ASCE/115/2261-2275), and Soroushian, Michigan 
State University, (Soroushian/1989/ACI//217-222). 

Tepfers, Chalmers University of Technology, and 
Schober and Schmidt-Thrö, Munich Institute of 
Technology, continued the ring tension approach 
(Tepfers/1982ASCE/ST1/283-301, Schober 1984, 
Schmidt-Thrö/1988/DAfStb/389/175-197). Schober 
derived theoretical bond stress-slip relationships 
based on consideration of a local compressive de-
formation near the interface of the reinforcement. 

Ingraffea, Cornell University, developed a finite 
element algorithm that rearranges the mesh division 
as the crack propagates (Ingraffea/1984/ASCE/110 
/871-890). Yankelevsky, Israel Institute of Technol-
ogy, developed a two-node linear bond element so 
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that the degrees of freedom are reduced in compari-
son to the conventional four-node bond link element 
(Yankelevsky /1985/ASCE/111/205-219). Keuser, 
Ingenieurbiiro Bung at Heidelberg, formulated sev-
eral slip functions of the bond element and com-
pared their accuracies (Keuser/1987/ASCE/113/ 
2160-2173). 

Shima, The University of Tokyo, proposed a bond 
stress-slip model as a function of reinforcement 
strain based on pull-out tests with massive concrete 
specimens (Shima/1987/JSCE/378/165-174, Shi-
ma/1987/JSCE/378/213-220). 

 

 
Figure 15. Computed slip along reinforcement in beam-column 
joint (Filippou/1986/ASCE/112/937-942). 

11 1990S 

Since the 1970s, through the ring tension approach, 
it was found that the surface geometry of deformed 
bars considerably affects bond behavior. Investiga-
tions of the influence of rib geometry on bonds were 
therefore accelerated in the 1990s. Darwin, Univer-
sity of Kansas, made cantilever specimens with var-
ious relative rib area ratios (Fig. 16; Dar-
win/1993/ACI//646-657). It was observed that bond 
strength and stiffness increased as the relative rib 
area ratio increased from 0.05 up to 0.20. Hamad, 
American University of Beirut, prepared bars with 
various rib angles (Hamad/1995/ACI//3-13). Bond 
stiffness increased as the rib angle increased from 
30° to 60°, but did not increase when the angle was 
greater than 60°. Idun, University of Kansas, inves-
tigated the influence of the rib geometry of epoxy-
coated bars (Idun/1999/ACI//609-615). 

Many bond tests were performed for epoxy-
coated reinforcements (Hadje-Ghaffari/1994/ACI// 
59-68, Cairns/1995/ACI//23-27, and Brearley/1990/ 
ASCE/116/2236-2252) and for newly invented fiber-
reinforced cementitious materials (Harajli/1994/ 
ACI//511-520, Hota/1997/ACI//525-537, Naaman/ 
1991/ASCE/117/2769-2790, and Naaman/1991/ 
ASCE/117/2791-2800). 

Giuriani of the University of Brescia proposed a 
semi-theoretical bond stress-slip model as a function 
of the splitting crack width (Fig. 17; Giuria-

ni/1991/ASCE/117/1-18). Giuriani developed an eq-
uation that relates the confining reinforcement stress, 
the tension-softening stress of concrete, and the 
bond stress and numerically evaluated the bond slip. 
Kanakubo, Tsukuba University, Japan, also derived 
a theoretical bond stress-slip relationship under bond 
splitting failure (Kanakubo/1997/AIJ/492/99-106, 
Kanakubo/1998/AIJ/506/163-169, Kanakubo/1996/ 
JCIa/18-2/527-532, Kanakubo/1997/JCIa/ 19-2/597-
602). 

 

 
Figure 16. Bond test of deformed bars with various relative rib 
area ratios (Darwin/1993/ACI//646-657). 

Yankelevsky, Israel Institute of Technology, pro-
posed a hysteresis model of a bond stress-slip rela-
tionship allowing for deterioration due to cyclic 
loads (Yankelevsky/1992/ACI//692-698). Kankam, 
University of Science and Technology at Kumasi, 
Ghana, investigated the influence of reinforcement 
strain on the reduction of bond strength based on 
tests using specimens of grooved bars (Kan-
kam/1997ASCE/123/79-85).  

The amount of research on bonds between con-
crete and fiber-reinforced polymers (FRP) increased 
during the 1990s (Chajes/1996/ACI//209-217, Nan-
ni/1992/ASCE/118/2837-2854, and Saiidi/1994/ 
ASCE/120/2958-2976). 

12 2000S 

Bamonte, Politecnico di Milano, observed bond 
splitting crack widths in high strength concrete (Ba-
monte/2007/ASCE/133/225-234). Tammo, Lund 
University, measured the local deformation of con-
crete around a reinforcement (Tammo/2009/ACI// 
259-267). Chao, University of Texas at Arlington, 
conducted cyclic bond tests in high performance 
FRC (Chao/2009/ACI//897-906). Eligehausen, 
Stuttgart University, and Lowes, University of 
Washington, proposed bond stress-slip models as 
functions of many significant factors (Eligehau-
sen/2000/DAfStb/503/1-89, and Lowes/2004/ 
ACI//501-511). Studies of FRP bonds also continued 
through the 2000s (Nakaba /2001/ACI//359-367, 
Kanakubo/2001/JCIb/12_1/33-43, Kanakubo/2001/ 
JCIb/12_3/27-37). 
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Figure 17. Relationships between bond stress, slip, and split-
ting crack width (Giuriani/1991/ASCE/117/1-18). 

13 CONCLUDING REMARKS 

The following remarks are based on our survey of 
345 papers regarding bond problems, which were 
published in the United States of America, Germany, 
Austria, and Japan from the late 19th century to the 
early 21st century. 
− Bond problems were recognized at the same time 

as the invention of reinforced concrete systems in 
the late 19th century. The world’s first RC design 
provisions in 1904 describe an equation for the 
estimation of bond stress and the allowable bond 
strength of flexural beams. 

− It is commonly thought that bond tests were also 
conducted in the late 19th century. Basic experi-
mental methods including the pull-out test, the 
uniaxial tension test, and the method of measur-
ing slip along the longitudinal reinforcement of a 
flexural beam were not developed until the 1910s. 

− The cantilever-type bond testing method was in-
vented by Otto Graf in 1940, although it was in-
itially used as an anchorage test of longitudinal 
reinforcements. 

− A considerable number of bond-related studies 
have occurred whenever new kinds of reinforce-
ments were invented such as deformed bars, high 
strength bars, epoxy-coated bars, fiber-reinforced 
polymers, etc. 

− The bond-related studies had dealt with flexural 
reinforcements and lapped splices in flexural 
beams by the 1960s. Studies of tension stiffening 

in RC plates began in the 1970s, and that of 
bonds of columns and beam-column joints began 
in the 1980s. 

− The bond splitting problem has been recognized 
since the 1970s. The ring-tension model is pro-
posed to investigate the mechanism of bond split-
ting. 

− Second-order differential equations were first ap-
plied to bond problems in 1933. The pace of the 
analytical studies of bond problems began to ac-
celerate after Gallus Rehm’s research in 1961. 

− Finite element analysis of RC structures was 
started by D. Ngo in 1967; the use of the bond 
link element was started in the same study.  
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