加速度計測網を利用した構造物健全性評価手法の開発 その2: 健全性評価手法の開発

正会員	○赤上 広生*
同	亀田 敏弘**
同	金久保 利之***

健全性評価 モニタリング 加速度計測網

1. はじめに

同名論文(その1)では、民生品向けの電子デバイスを 用いて加速度計測装置を開発し、5層の実験モデルに加 速度計測網を構築した.本報では、加速度計測網を利用 した構造物健全性評価手法を提案する.なお、本報にお ける加速度センサーとしてひずみゲージ式加速度センサ ーを利用した.

2. 提案手法の概要

本研究で提案する健全性評価手法では、先ず、ある時 刻における実測データAとシミュレーションデータA'、 ならびに、ある一定時間経過後、あるいは中小地震発生 後における実測データBを必要とする.実測データAと 実測データBの差とシミュレーションデータA'とシミュ レーションデータB'の差をそれぞれ算出し、実測データ の差とシミュレーションデータの差が同値となるように シミュレーションデータB'を決定する.そして、シミュ レーションデータを算出するために用いた数学的パラメ ータを健全性評価のための指標として、対象構造物にお ける損傷有無や損傷箇所、損傷程度を評価する.

具体的に、実測データやシミュレーションデータの差 を求めるために、各計測地点で得られた加速度時刻歴デ ータや数値解析により得られた加速度時刻歴データを用 いて、各周波数成分におけるフーリエスペクトルを算出 する.そして、そのフーリエスペクトルを利用して、損 傷前後における実測データとシミュレーションデータの 差を求める.これを、 ΔC と定義する.本手法では、全 ての剛性低下率の組合せについて順解析を用いて ΔC の 値を求める.次に、 ΔC の値が最小となるときの剛性低 下率の組合せを同定する.そして、各層の剛性低下率を 指標として構造物の健全状態を評価する.フーリエスペ クトルを用いた理由は、試作を行った加速度計測装置の 分解能が 5gal と比較的荒く、周波数成分で解析を行うこ とにより、その欠点を補うためである.

構造物に対する入力としては、不定期に発生する震度 3 程度の中小地震動を想定している.したがって、中小 地震動が発生する度に振動計測を行うことにより、構造 物の健全性を監視することが可能である.

3. 数値実験による提案手法の妥当性の検証

3.1 実験モデル

提案する健全性評価手法の妥当性を検討するため、5 層の鉄骨造構造物を想定した 5 質点系せん断型モデルを 用いて、数値実験を行った.実験モデルを図1 に示す. 各質点の質量を 1.0×10⁵kg、健全時の剛性を各質点とも に 1.5×10⁸N/m と仮定した.減衰定数は 2%の剛性比例型 とし、復元力特性は線形モデルを適用した.

図1 数値実験モデル(2層の剛性が20%低下した場合)

3.2 入力地震動

入力地震動を選択するにあたり,対象構造物が建って いる地域で発生する可能性の高い地震動を用いた検討が 必要であると考えられる.そこで,構造物が健全状態に あるときの入力地震動として,2004/04/04 茨城県沖 (M5.8,震源深さ49km)の K-net つくば NS 方向の約40秒 間の強震動記録を用いた.気象庁によると,この地震に よりつくば市では震度3が観測された.なお,茨城県沖 を震源とする地震は,茨城県地方で比較的頻繁に発生す る地震の一つである.

一方,構造物が損傷状態にあるときの入力地震動として,2005/11/15 三陸沖(M6.9,震源深さ 0km)の K-net つくば NS 方向の 40 秒間の強震動記録である.気象庁によると,この地震によりつくば市では震度 3 が観測された. 3.3 損傷パターン

本実験で解析を行った構造物の損傷パターンを表1に 示す.シミュレーションデータを作成するにあたり,初 期状態において各層の剛性にばらつきを与えず各層の剛 性を一定とした.一方,損傷前後の実測データを作成す

Development of Diagnostic System for Structural Damage using Acceleration Network

Part 2 : Development of Diagnostic System

AKAGAMI Hiroki, KAMEDA Toshihiro and KANAKUBO Toshiyuki

るにあたり、実構造物の地震応答を模擬するために、初 期状態おいて剛性に1~2%のばらつきを与えた.

AX I	頂筋ハクー	
	損傷層	剛性低下率
損傷パターン1	2 層	20%
損傷パターン2	2層・4層	ともに 10%
損傷パターン3	損傷	「なし

表1 損傷パターン

3.4 実験結果と考察

各層の剛性低下率を $\alpha_1 \sim \alpha_5$ とする. $\alpha_1 \sim \alpha_5$ の5 変数 について、0%~30%の範囲で 2%毎に変化させ、全ての剛 性低下率の組合せについて Δ Cの値を求めた. **表** 2 に Δ C の値が小さい方より 3 番目までの Δ Cの値とそのときの 各層の剛性低下率を示す. パターン 1 において、第 2 層 の剛性低下率を正解値よりも数%程度低く同定しているが、 おおむね良好な精度で同定できた.

4. モデル実験による提案手法の妥当性の検証

4.1 実験モデル

図2に示すように、実験モデルは 5層で、各階床レベルに2mm厚のア ルミニウム板を置き、各層の隅部に 柱を模擬した4枚の板と壁を模擬し た2枚の板をネジ・ナットで取り付 けた.損傷による各層の剛性低下は、 実験モデルの隅部にある柱を除去す ることにより実現した.具体的には、 隅部にある柱を接合している状態を 健全時とした.2本の柱を除去した 状態で層剛性が10%低下し、4本の 柱を除去した状態で層剛性が20%低 下するように設定した.

図2 実験モデル

(a) 損傷パターン1

表 2 数値実験による同定結果 (b) 損傷パターン 2

(c) 損傷パターン3

$\alpha_1\%$	$\alpha_2(\%)$	a3(%)	a4(%)	a .(%)	∆C (gal)	a 1(%)	$\alpha_2(\%)$	a3(%)	a 4(%)	a 5(%)	∆C(gal)	$\alpha_1(\%)$	$a_2(\%)$	a3(%)	a4(%)	a .(%)	∆C(gal)
0	16	0	0	0	30.86	0	6	0	8	0	29.73	2	0	0	2	0	31.83
0	18	0	0	0	31.23	0	6	0	6	2	29.75	0	2	2	0	2	32.73
0	16	2	0	0	31.25	0	6	2	6	0	29.95	0	2	0	2	0	33.12

(a) 損傷パターン1

表3 モデル実験による同定結果 (b) 損傷パターン2

(c) 損傷パターン3

$\alpha_1(\%)$	$\alpha_2(\%)$	$\alpha_3(\%)$	a 4(%)	a.%)	∆C(gal)	a1(%)	$\alpha_{2}(\%)$	a3(%)	a 4(%)	a.%)	∆C(gal)	a 1(%)	$a_2(\%)$	$\alpha_3(\%)$	a 4(%)	a.%)	∆C(gal)
0	14	0	0	0	1.927×10^{3}	0	10	0	0	0	2.628×10^{3}	0	0	0	0	0	1.554×10^{3}
0	12	0	0	0	1.929×10 ³	0	8	2	0	0	2.628×10 ³	0	0	2	0	0	1.554×10^{3}
0	12	2	0	0	1.929×10^{3}	0	8	0	0	0	2.628×10^{3}	0	0	0	0	2	1.554×10 ³

* 東海旅客鉄道株式会社

** 筑波大学システム情報工学研究科 講師・Ph.D

*** 筑波大学システム情報工学研究科 助教授・博士(工学)

* Central Japan Railway Company

** Assist. Prof., Graduate Schl. of Systems and Information Eng., Univ. of Tsukuba, Ph.D

*** Assoc. Prof., Graduate Schl. of Systems and Information Eng., Univ. of Tsukuba, Dr.E

実験モデルの各層と最下部に設置した加速度センサー により計測された加速度時刻歴データを用いて,損傷層 と剛性低下率の同定を行った.実測データとして,各層 で計測された加速度データを使用した.一方,シミュレ ーションデータは,5 質点系せん断型モデルを用いて算 出した.数値解析を行うための入力データとして,実験 モデルの最下部で計測された加速度データを使用した. 実験モデルの損傷パターン,ならびに入力地震動は,数 値実験と同様である.

4.3 実験結果と考察

*α*₁~*α*₅の5変数について,0%~30%の範囲で2%毎に変 化させ、全ての剛性低下率の組合せについてΔCの値を 求めた. $表 3 \text{ IC} \Delta C$ の値が小さい方より 3 番目までの ΔC の値とそのときの各層の剛性低下率を示す. 損傷パター ン1では、損傷度を正解値より小さめに同定したものの、 損傷程度の定量的評価は可能であった.損傷パターン 3 では、精度良く評価できた.しかし、損傷パターン2で は、第2層目の損傷度を精度良く評価できたのに対して、 第4層目を損傷なしと同定した.一般的に、高層部に損 傷が発生した場合、高次モードの感度は低次モードの感 度よりも大きくなる.提案手法においては、フーリエス ペクトルをもとに同定しているため、高次モードの変化 は低次モードの変化に比べて、同定結果に与える影響は 小さい. したがって、高次モードのスペクトルが低次モ ードのそれと同等になるように重み付けをすることによ り、同定結果の精度が向上すると考えられる.

5.まとめ

本報では、加速度計測網を利用した構造物健全性評価 手法の提案を行い、数値実験ならびにモデル実験を通し て、提案手法の検証を行った.

876