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Abstract 
This paper describes a three-dimensional parallel solution scheme for inverse dynamics of link 
mechanisms, which has already been proposed for the two-dimensional case and applied in several in-
plane motions. In this theory, the entire system is subdivided into finite elements and evaluated as a 
continuum. A single-link structure of a pin joint and a rigid bar is expressed using the Shifted 
Integration (SI) technique, which is conventionally used in finite element analyses of framed structures. 
This scheme calculates nodal forces by evaluating equations of motion in a matrix form, and thus 
information from the entire system can be handled in parallel, which is a very useful characteristic 
when applied in closed-loop or continuously transforming mechanisms. The obtained nodal forces are 
then converted into the joint torque in the system. Simple numerical tests on two-dimensional and 
three-dimensional open-loop link mechanisms are carried out for comparison with other schemes. The 
proposed scheme is implemented in a control system to evaluate the performance in actual control 
with dynamics compensation, and some control experiments are carried out on an open-loop link 
mechanism. The results reveal the possibility of using the proposed solution scheme in feed-forward 
control, independent of the system configuration of link mechanisms. 
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1 Introduction 

There is a difficulty in calculating the inverse dynamics for the closed-loop mechanism using 
conventional methods such as the Newton-Euler method or the Lagrangian method. This is due to the 
presence of interdependent variables between the constituting links, which become impossible to 
derive by the former method when a chain is closed in the system. The latter method is also difficult to 
apply, since the derivation process of the equation considering the binding condition is very 
complicated. Generally, robotic tasks include motions that generate open and closed loops alternately, 
and the dynamic equations of the system (or the numerical algorithm) require instant revision during 
the motion. A unified solution scheme for calculating the inverse dynamics is strongly desired, 
particularly for those cases of massive, quick-motion robots controlled by force. 
Isobe and Nakagawa proposed the application of the Finite Element Method (FEM), a widely used 
computational tool for analyzing, for example, structures and fluids, to a control system of connected 
piezoelectric actuators, and achieved good control not only of the actuator itself but also of the entire 
system [1]. Isobe et al. implemented the FEM in a two-dimensional solution scheme of inverse 
dynamics for hyper-redundant link mechanisms [2], and also developed it for application to in-plane 
problems of closed-loop link mechanisms [3]. Using the characteristic of the FEM, i.e., the capability 
of expressing the behavior of each discrete element as well as that of the entire continuous system, 
local information such as nodal forces or displacements can be calculated in parallel. The nodal forces 
are calculated incrementally in a matrix form, which does not require any revision of the outside frame, 
and the variables inside can be revised simply by changing the input data in the case of a physical 
change in the hardware system. The obtained nodal forces are then used to calculate the joint torque in 
the link systems. 
In this paper, we describe a three-dimensional solution scheme using the FEM for inverse dynamics of 
link mechanisms. Link mechanisms are modeled using linear Timoshenko beam elements based on the 
Shifted Integration (SI) technique [4], which is conventionally used in finite element analyses of 
framed structures. Nodal forces for obtaining target trajectories are calculated using the FEM, and the 
joint torque of each link is calculated based on a matrix-formed conversion equation between nodal 
forces and the joint torque. Some numerical tests are carried out for several types of open-loop link 
mechanisms to verify the validity and flexibility of the scheme. The proposed scheme is also 
implemented in a control system to evaluate the performance in actual control with dynamics 
compensation, and some control experiments are carried out on a two-dimensional, nongear open-loop 
link mechanism.  

2 Finite Element Modeling of Link Mechanisms 

The SI technique, which is applied in order to model link mechanisms in this study, was originally 
developed as a finite element scheme for the analysis of framed structures. By considering the 
equivalence conditions between the strain energy approximations of a linear Timoshenko beam 
element and a physical model, the rigid-bodies spring model (RBSM), the relationship between the 
locations of a numerical integration point (s1) and a plastic hinge (r1) in the linear Timoshenko beam 
element (Ä1 î r1; s1 î 1) is obtained [4]. Referring to Fig. 1, it is expressed by  
 

s1 = Är1 or r1 = Äs1,                                                                  (1) 
 
where s1 and r1 are the positions of the numerical integration point in the finite element and the spring 
in the RBSM, respectively. Referring to the above equation, the rotational and shear spring placed at 
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the left end (r1= -1) of the element can be expressed by shifting a numerical integration point in the 
element to the right end (s1=1). Various stiffness values of a link joint are then expressed by changing 
the stiffness of the spring (or the element). Figure 2 shows the general concept of modeling by the SI 
technique. As shown in the figure, a link mechanism formed by a motor and a link member can be 
modeled by placing a nodal point at the center of gravity, and by two Timoshenko beam elements with 
numerical integration points shifted to the opposite ends of the link joint. The elemental stiffness 
matrix is obtained using s1 , r1 and the normalized stiffness Cmot of the spring: 
 

[K] = Cmot

Z
V
[B(s1)]

T [D(r1)][B(s1)]dV
.
                                                   (2) 

 
Various types of link joints (pin to rigid) can be expressed by varying Cmot between 0 and 1. The value 
0 is used in this study to estimate the validity of the proposed scheme in the pin joint-rigid bar link 
mechanisms. A lumped mass matrix is also defined using the location of the numerical integration 
point s1. The diagonal components of the elemental mass matrix are 
 

[M ] = [m1 m1 m1
m1l2

12

m1l2

12
t1 m2 m2 m2

m2l2

12

m2l2

12
t2],

                                        (3) 

 
where 

Figure 1: Linear Timoshenko beam element and its physical equivalent.
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Figure 2: Modeling of link mechanism by Shifted Integration technique.
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m1 = öAl(1Ä s1)=2; m2 = öAl(1 + s1)=2;

t1 = öIzl(1Ä s1)=2; t2 = öIzl(1 + s1)=2;
                                             (4) 

 
and ρ, A, l, and Iz are the density of the member, the cross-sectional area, the length of the element 
and the polar moment of area inertia, respectively. Based on the matrix, the total mass of the element 
becomes concentrated at r1=1 when the link joint is placed at r1= -1 (thus s1=1). A nodal point placed 
between two Timoshenko beam elements thus expresses the center of gravity in a link member (see 
Fig. 2). Additional mass representing the motors or other objects can be applied at corresponding 
nodal points. 

3 Three-Dimensional Parallel Solution Scheme for N-Link Mechanism 

Figure 3 shows the nodal forces (based on global coordinates) acting on the i-th link (i=1~n) in a three-
dimensional open-loop n-link mechanism. The joint torque τix required around the x-elemental axis 
on the i-th link, for example, is determined by adding an i+1-th joint torque τ(i+1)x to the sum of 
inertia moments acting on this link, and is expressed by nodal forces Fiy and FiΦx based on elemental 
(or link) coordinates as follows: 
 

úix = liCFiy + li(
nX

j=i+1

Fj)y + Fiûx +ú(i+1)x ,                                           (5) 

 
where liC is the length between the former joint and the center of gravity and li is the link length. By 

Figure 3: Nodal forces acting on i -th link in an open-loop n-link mechanism. 

FiûX
FiûY

FiûZ

X

Y
Z

FiX

FiY

FiZ

Pn
j=i+1 FjX

Pn
j=i+1 FjY

Pn
j=i+1 FjZ

z
y

x

Link i+ 1

Link i

：Nodal point

：Nodal point expressing center of gravity

Elemental coordinates

Global coordinates



 WCCM V, July 7-12, 2002, Vienna, Austria  
 

 
 

5

considering other components around the y- and z-axes, and arranging them into global coordinates (X, 
Y, Z) in a matrix form, the joint torque vector is expressed as 
 

fúng = [Ln][Tn]fPng,                                                            (6) 
 
where {Pn} is a vector related to nodal force, defined as 
 

fPng =

8>>>>>><>>>>>>:
P1

P2

Å
Å
Pn

9>>>>>>=>>>>>>; ; where fPig =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

FiX

FiY

FiZPn
j=i+1 FjXPn
j=i+1 FjYPn
j=i+1 FjZ

FiûX

FiûY

FiûZ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
.                                     

(7)

  
The transformation matrix [Tn] is expressed as 
 

[Tn] = [hn][T nGE ],                                                    (8) 
 
where [hn] is a correction matrix between x-y and z-x coordinate systems, which simply inverts their 
signs in the y-axis direction. [Tn

GE] is a transformation matrix between global and elemental 
coordinates which is expressed as 
 

h
TnGE

i
=

2666666666664

T1

T2 0

T3

Å
Å

0 Å
Tn

3777777777775
,

                                                  (9) 

 
where 
 h

Ti

i
=

264 Ai 0 0

0 Ai 0

0 0 Ai

375 ; and h
Ai

i
=

264 cosûiXx cosûiY x cosûiZx

cosûiXy cosûiY y cosûiZy

cosûiXz cosûiY z cosûiZz

375
,               

(10) 

 
where φiXx, for example, represents the rotational angle between X-global and x-elemental coordinates.   
[Ln] is a matrix related to member length and is expressed as 
 

[Ln] = [T nÉ ][É
n],                                                          (11) 

 
where [T nÉ ] is a transformation matrix between each elemental coordinate, and is expressed as 



 D. Isobe  
 

 
 

6

 

h
TnÉ

i
=

2666666666664

T11 T12 T13 Å Å Å T1n

T22 T23 Å Å Å T2n

T33 Å Å Å T3n

Å Å Å Å
Å Å Å

0 Å Å
Tnn

3777777777775
.                                     

    (12) 

 
[Tij] (i,j=1~n) is expressed using matrix [Ai] shown above: 
 

[Tij ] = [Ai][Aj ]
T .                                                    (13) 

 
[Én] is expressed as  

 

h
Én

i
=

2666666666664

É1

É2 0

É3

Å
Å

0 Å
Én

3777777777775
,                                         (14) 

 
where 
 h

Éi

i
=

264 0 liC 0 0 li 0 1 0 0

liC 0 0 li 0 0 0 1 0

0 0 0 0 0 0 0 0 1

375
.                               

(15)
  

Information on the i+1~n link is summed by multiplying the [Ln] matrix with vector [Tn]{Pn}, which is 
the nodal force vector transformed into elemental coordinates. In cases of closed-loop link 
mechanisms, the above matrix is divided into multiple parts, as shown below, to fix the configuration 
of passive joints as well as the torque allocation undertaken by active joints.  
 

[Ln] =

"
La 0

0 Lb

#
                                                       

(16) 
 

The suffixes a and b are the number of links (a+b=n) when the mechanism is divided into two parts. 
This process is the only difference in the algorithm between open- and closed-loop link mechanisms. 
A vector related to incremental nodal forces acting on the i-th link is defined using the nodal numbers 
k (=2i): 
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fÅpkg =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ÅfkX

ÅfkY

ÅfkZP2n+1
h=k+1ÅfhXP2n+1
h=k+1ÅfhYP2n+1
h=k+1ÅfhZ

ÅfkûX

ÅfkûY

ÅfkûZ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
.                                                  

(17) 

 
Thus, the vector related to the nodal force acting on the i-th link at t+Δt is successively calculated 
using the above vector as follows: 
 

fPigt+Å t = fPigt + fÅpkg.                                               (18) 
 
The successive values of the n-link joint torque are then obtained by substituting Eq. (18) into Eq. (6). 
Newmark's β method (β=1/4) is used as the time integration scheme to solve the incremental 
kinematic equation.  

4 Numerical Examples 

The parallel solution scheme is implemented into a computational program, and applied to the joint 
torque calculation of a two-dimensional open-loop mechanism as an example, in order to confirm the 
accuracy of the calculated torque curves by comparing them with those obtained by the Newton-Euler 
method. Figures 4(a) and 4(b) show the torque curves obtained using the two schemes for the target 
trajectory for the 1.0 s motion given in the eight-link mechanism (length of each link: 20cm; weight: 
107.5g; center of gravity at midpoint), as shown in Fig. 4(a). Gravity is assumed to act vertically 
downward. Although the motion may produce various nonlinear forces, the torque curves obtained by 
the FEM are in good agreement with those obtained by the Newton-Euler method. Evidently, the 
parallel solution scheme is capable of considering every component in the dynamics. 
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Figure 4(b): Joint torque curves obtained by FEM. 
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Figure 4(a): Joint torque curves obtained by
Newton-Euler method. 
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Figures 5(a) to 5(d) show the numerical results obtained by applying a three-dimensional motion to a 
6-DOF robotic arm. The trajectory of an object (mass: 5.0kg) which is held at the end of the arm is 
approximately given as shown in Fig. 5(b). Although the actual trajectory is not precisely along a 
straight line as shown, the torque curves calculated by the FEM show good agreement with those in 
the reference [5]. It is confirmed that the proposed parallel solution scheme is also valid for three-
dimensional cases. 

5 Control Experiments 

Conventional schemes for calculating inverse dynamics supply exact solutions through the use of the 
rotational angle, the angular velocity and the angular acceleration at a specific time as input. In the 
meantime, the proposed parallel solution scheme yields an approximate solution by summing the 
incremental information in each step. Therefore, the slight difference in the calculation procedure must 
be investigated to enable application in a control system.  
The control system shown in Fig. 6 is developed to determine the performance of the system in actual 
control experiments. A three-link mechanism with no gear shaft attached to the motors is used in the 
experiments to maximize the effect of the dynamics.  
Input torque τ is calculated using 

(b) Trajectory of the object.

(c) Joint torque curves [5]. 
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Figure 5: Calculation of joint torque curves for a 6-DOF robotic arm. 
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ú= J _qd +Dqd + fc +úI:D: +úfeedback,                                               (19) 

 
where J  is the inertial moment of motors, D  is the viscosity coefficient of motors, fc is the dynamic 
friction force,τI.D. is the input torque calculated by FEM, and qd  and _qdare the target angle and 
angular velocity, respectively. The viscosity coefficient of motors D and the dynamic friction force fc 
are identified beforehand by simple experiments.τfeedback  is the feedback torque which is obtained 
using 
 

úfeedback = Ku(qd Ä q) +Kv( _qd Ä _q),                                               (20) 
 
where q  and _q  are the actual angle and angular velocity acquired from the attached encoders, 

Figure 7: 3.0 s target motion for a 3-link mechanism. 
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Figure 6: Outline of the control system with parallel solution scheme.
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respectively. Ku and Kv are the feedback gain for the angle and angular velocity, respectively.  
A 3.0 s target motion is applied to the 3-link mechanism, as shown in Fig. 7. PD control with feed-
forward using calculated inverse dynamics is compared to control without feed-forward. Figure 8 
shows the control result for Link 1 as an example. It is evident that (feed-forward + PD) control gives 
much better convergence against the target motion. 
Although the proposed scheme requires incremental and successive calculation in the algorithm, the 
result of the control experiment clearly shows that the performance of a control system with this 
scheme presents no problem in actual use. The calculation time per step is about 0.5 ms, which is short 
enough to satisfy the sampling time in the system (which is 10 ms).  

6 Concluding Remarks 

The proposed solution scheme derives nodal forces in parallel and converts them to the joint torque, 
which works conveniently in application to many types of link mechanisms. It requires no revision in 
the basic numerical algorithm during the transformation process of the mechanisms. It may achieve 
stability and smoothness in continuous motions of robotic architecture. The obtained control results 
indicate the possibility of using the proposed solution scheme in feed-forward control independent of 
the system configuration of link mechanisms. Further control experiments on closed-loop and 
combined-loop link mechanisms are scheduled. 
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