ASI-Gauss 法を用いたサーバーラックの地震時挙動解析

Motion Analysis on Seismic Behavior of Server Rack Using ASI-Gauss Technique

○非 金野 圭祐(センターピア㈱) Keisuke KANANO, CenterPEER Corporation, Nihonbashi Honcho Square 2F, 1-2-6, Nihonbashi Honcho, Chuo-ku, Tokyo

正 磯部 大吾郎 (筑波大) Daigoro ISOBE, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki

Key Words: Server Rack, ASI-Gauss Technique, Motion Analysis

1. はじめに

サーバーやネットワーク機器などの情報機器は、現代の情 報社会において重要なインフラ設備のひとつである.これら 情報機器は振動や衝撃に弱いため、サーバーラックと呼ばれ る専用筐体に固定して管理することが一般的である.サーバ ーラック等の情報・通信装置に対する信頼性確保のため、こ れらの耐震基準および耐震試験規格[1]が定められているが、 個々のシステムの構成や用途により実装する機器の種類や 設置条件は異なるため、それらすべての条件に対して耐震試 験を行うことはコストの観点から現実的ではない.しかし、 機器の種類や設置条件が異なると、それらは装置全体の重心 や剛性に影響するため、多様な条件を考慮でき、かつ簡便に サーバーラックの耐震性を評価できる方法の確立は重要で あり、そのためには数値解析による評価が有効である.

防災科学技術研究所では、建築・土木・地盤構造物および 室内の家具・什器類の地震被害や対策効果を高精度に再現す る数値シミュレーションシステム(数値震動台, E-Simulator) の構築およびその活用のための研究開発を行っている[2]. 非 構造部材の解析は、室内安全性・耐震性の評価、避難経路の 確保などに有効な手段であり、数値振動台では、このような 評価に向けた非構造部材の地震時挙動を再現する解析コー ドの開発を進めている.

本研究では、防災科学技術研究所が進めている数値振動台 プロジェクトの一環として、非構造部材のひとつであるサー バーラックの耐震性評価方法の確立に向け、サーバーラック の実際の振動台実験時の挙動の再現を試みた.手順としては、 まず振動台実験を行い、その結果と解析結果を比較し解析モ デルの有効性を検討した.解析コードには、大規模な骨組構 造解析において計算コストを最小限に抑えることが可能な ASI-Gauss 法[3]を用いた.ASI-Gauss 法は、家具の地震時の 転倒挙動解析[4]や医療施設内の什器の地震時挙動解析[5]な どにも応用されている.

Fig. 1 Overview of shake-table test (simulation target of this study is on the right)

2. サーバーラックの振動台実験

情報機器の代わりにダミーウェイトを搭載したサーバー ラックを Fig. 1 のように振動台上に設置した架台に固定し, 振動台実験を行った. ダミーウェイトを含む試験体の概要を Fig. 2 に示す. ウェイトはそれぞれ, サーバーラック内の機 器固定用の柱(以下, マウントアングル)に取り付けたサポ ート金具に載せ, マウントアングルにねじで固定した.

実験には,最大加速度がそれぞれ水平方向 2.0 G,鉛直方 向 3.0 G で加振可能な㈱MTIの大型三軸振動台(Multi Cargo Simulator)を用いた.入力波には,㈱MTI 保有の NTT 人工 地震波(1998年12月版)を用い,架台の台上加速度と試験 体頂部の水平方向の変位を測定した.

3. サーバーラックの地震時挙動解析

3-1. 解析手法

本研究で用いた解析コードである ASI-Gauss 法は,部材性 状に合わせて要素内の数値積分点を順応的にシフトするこ とで,計算コストを低く抑えることが可能な順応型 Shifted Integration法 (ASI法)をさらに改良した手法で,2つの線形 チモシェンコはり要素をサブセット要素として考え,そのガ ウス積分点に相当する位置に応力評価点を配置するように 数値積分点をシフトすることで,弾性変位解の精度を向上さ せている.

3-2. 解析モデルおよび解析条件

試験体はすべて線形チモシェンコはり要素を用いてモデ ル化した. 簡略化のため,比較的剛性への影響が小さいと考 えられる扉やパネル類は省略し,部材の密度を調整すること で試験体の重心を表現した. 解析モデルは,ウェイトが直接 マウントアングルに結合する場合と,ウェイトがねじを介し てマウントアングルに結合する場合(以下,前者を通常モデ ル,後者をねじ付きモデル)をそれぞれモデル化した(Fig. 3).モデルの要素数および節点数は,通常モデルが952と776,

Fig. 2 Size and location of the center of gravity of the target

ねじ付きモデルが 1,168 と 956 である.

架台に試験体を固定するボルト穴位置の並進3 自由度を 拘束した.重力を考慮し、入力波には振動台実験で得た架台 の3軸方向の台上加速度(Fig.4)の0~14sのデータを用い た.変位評価点は、振動台実験と同じ試験体頂部とした.解 析の時間増分は振動台実験のサンプリング時間と同じ2ms である.

4. 実験結果と解析結果の比較

通常モデル,ねじ付きモデルそれぞれの解析結果と実験結 果の比較を Fig.5(a)(b)に示す.Fig.5(a)より,ねじを表現しな い通常モデルはモデルが硬くなりすぎ,実験結果と大きく乖 離した.それに対して Fig.5(b)のねじ付きモデルは,0~4 s まで解析結果と実験結果がよく一致した.しかし,4 s 以降 は解析で求めた変位が実験結果の変位より小さくなった.

Fig. 5(b)で時間が経過するに従い,解析の変位より実験の 変位が大きくなることから,実験では振動中に剛性が低下す ることが考えられる.この原因をねじの緩みであると仮定し, ねじの断面定数を変えて解析を行った.具体的にはねじが緩 み,ヒンジ化することを表現するために台上加速度波形の第 1ピーク後(解析開始後 3.64 s)に全塑性モーメント*M*_pが仮 に元の値の 1/3 倍となるという条件を与え,改めて解析を行 った.1/3 倍という値は,いくつかの条件で解析を行い帰納 的に求めた.その解析結果が Fig. 6 である.この場合,11 s まで解析結果と実験結果がよく合うようになり,ねじ部の剛 性の変化が結果に大きく影響することが確認できた.今後, 変位など振動中の挙動によってねじ部の緩みが変化する関 数などを導入し,さらに再現性の高いモデル構築が可能か確 認していく予定である.

Fig.3 Overview of the numerical model

Fig.4 Acceleration waveforms at the base frame obtained by shake-table test

Fig.5 Comparison between numerical and test results

Fig.6 Results when changing the cross section performance of screws

5. まとめ

本研究では、現在の情報通信分野における重要なインフラ 設備のひとつであるサーバーラックの耐震性評価方法の確 立に向け、サーバーラックの実際の振動台実験時の挙動を数 値解析により再現することを試みた.

実験結果とそれぞれの解析結果の比較から、サーバーラッ クの地震時挙動の再現のためには、機器を固定するねじのモ デル化が必要であり、より精度の良い再現を目指すにはねじ の緩みを表現することが重要であることがわかった. 今後、 振動中の挙動によってねじの緩みを表現できるような関数 を取り入れ、より再現性の高いモデル構築を行っていく予定 である.

参考文献

- [1] 株式会社 NTT ドコモ:通信装置等の耐震試験規格, (2009), https://www.nttdocomo.co.jp/binary/pdf/corporate/ disclosure/procure/policy/quakeproof/taishinshikenkikakuJ_ 200911.pdf
- [2] 堀 宗朗, 野口 裕久, 井根 達比古, 秋葉 博:建築・土 木構造物の大規模地震応答数値解析手法の開発, 日本 地震工学会年次大会-2007 梗概集, pp. 14.
- [3] 磯部 大吾郎, チョウ ミョウ リン:飛行機の衝突に伴う骨組鋼構造の崩壊解析,日本建築学会構造系論文集, 576 号, (2004), pp. 39-46.
- [4] 磯部 大吾郎,山下 拓三,田川 浩之,金子 美香,高橋 徹,元結 正次郎:有限要素法を用いた地震時における 家具の挙動解析,日本建築学会構造系論文集,第80巻, 第718号, (2015), pp. 1891-1900.
- [5] 荻野 弘明,山下 拓三,金子 美香,磯部 大吾郎:家具・ 什器の地震時挙動を再現する有限要素解析手法の開発, 日本建築学会構造系論文集,第80巻,第717号,(2015), pp.1687-1697.