キーエレメント指標と火災時の建物の崩壊危険性の関連性について

Relevance of Key Element Index and Collapse Risk of Buildings under Fire

○非 大井 康平 (筑波大院)	正 磯部 大吾郎(筑波大)
Kohei OI, Graduate School, Univ. of Tsukuba	Daigoro ISOBE, Univ. of Tsukuba
1-1-1 Tennodai, Tsukuba-shi, Ibaraki	1-1-1 Tennodai, Tsukuba-shi, Ibaraki

Key Words: Steel Framed Buildings, Fire Induced Collapse, Key Element Index, ASI-Gauss Technique, Structural Collapse Analysis

1. 緒言

高層建築物の火災を引き起こす要因や火災規模は様々で あり、その際の建物に残存する余剰強度について系統的に議 論することは困難である.しかし、建物の火災崩壊を予防す る観点から、建物の様々な構造パラメータや火災発生箇所・ 範囲と,火災時の崩壊挙動との関連性を明らかにすることは 必要である.

過去において,建物に大規模火災が発生した際の崩壊挙動 の例として,アメリカ同時多発テロ事件において,ニューヨ ーク世界貿易センタービル(WTC-7)が7時間程度燃え続けた 後に完全崩壊してしまったことが挙げられる.ここで、米国 の研究調査機関である NIST が 9.11 事件についてまとめた報 告書[1]では、火災によって建物のキーエレメントとなる柱が 損壊したことが WTC-7 の崩壊の要因となった可能性を示唆 した.

本稿では、前述の調査結果を踏まえ、一般的な鋼構造建築 物をモデル化したものに対し様々な火災条件における火災 崩落解析を行い、キーエレメント指標[2](以下KI)と火災時 の建物の崩壊形態との関連性を調査した.ここでKIとは、本 研究室で考案された,建物の強度に対する柱の寄与度を数値 化したものである. 数値解析には火災崩落解析において実績 のある ASI-Gauss 法[3]を用いた. さらに, WTC-1, WTC-2 に 設置されていたアウトリガートラスシステムが崩壊開始ま での時間を稼ぐ点で有効であった可能性が NIST により報告 されていることを受け、3種類のトラスを解析モデルに設置 し、それらが崩壊形態に与える影響について調査を行った.

2. キーエレメント指標

KIとは、建物の強度に対する柱の寄与度を数値化したもの である. 建物の全柱梁接合部に対し鉛直方向に荷重増分を与 え, 建物内のいずれかの柱部材に降伏現象が起きた際の荷重 を降伏限界荷重 P_{G} とし,任意のi層内の柱番号aにおけるKIを 以下のように定義する[2].

Fig.1 Numerical model

$$KI_{i,a} = {}_{0}P_{G} / {}_{1}P_{G}(i,a)$$
(1)

添え字の0は、健全な状態の建物の降伏限界荷重であること を示す.また、添え字の1は、柱を1本除去した状態での建 物の降伏限界荷重であることを示す. すなわちこの場合のKI は、健全な建物の強度に対する柱1本の寄与度を表す.

本稿において、キーエレメント指標の積算値(以下KI積算 値)を火災範囲内に存在する全ての柱のKIを足し合わせたも のと定義し、以下のように表す.

$$\sum_{i=1}^{R} \sum_{j=1}^{l_i} [KI_{i,m(i,j)}]$$

$$= KI_{1,m(1,1)} + KI_{1,m(1,2)} + \dots + KI_{1,m(1,l_1)} + KI_{2,m(2,1)} + \dots + KI_{R,m(R,l_R)}$$
(2)

ここで, R, l_i, m(i, j)はそれぞれ建物の全層数, i層で火災 発生箇所に存在する柱の本数,およびその j本目の柱番号を 表す.本稿では,設定した火災範囲におけるKI積算値と建物 の崩壊形態との関連性について考察する.

3. 解析対象

解析対象として,図1に示すような10層5×3スパンの鋼 構造建築物をモデル化した. 建物の柱部材には SM490 の鋼 材を用いた角形鋼管,梁部材にはSS400の鋼材を用いたH型 鋼を使用した.床については面内変形を許容しない剛床仮定 とした.以下,この解析モデルをモデル a と呼ぶ.

次に, 建物が持つ余剰強度を増加させることで火災による 崩壊を抑制できるか検証するため,建物の最上層にハットト ラスを設置した解析モデル(以下,モデルb),アウトリガー トラスを設置した解析モデル(以下,モデル c),ハットトラ スとアウトリガートラスの両方を設置した解析モデル(以下, モデル d) を作成した. それぞれのトラスの構造を図2に示 す. ハットトラスは、最上層の外周部を補強するように斜め にトラス部材を設置したものであり、アウトリガートラスは、 建物の外周部を中央部が吊り上げることを想定し, 中央部と 外周部を繋ぐようにトラス部材を設置したものである.本稿 では,最上部のはり部材と同じ強度の部材で上記のトラス構 造を構成し、モデル a~d の 4 つのモデルを解析対象とした.

トラスを設置したことによる建物の強度の定量的な変化 を調べるため,建物全体を梁部材と見立て,建物の頂部へ載 荷した X 軸方向への荷重と変位の関係から曲げ剛性を算出 した. 片持ち梁へ軸方向と垂直に荷重を載荷した場合, 曲げ 剛性は以下の式で表わされる.

$$EI = PL^3/3\delta \tag{3}$$

ここで, EI, P, L, δはそれぞれ曲げ剛性, 荷重, 梁の長さ, たわみ量を表す.この式を用いて4つの解析モデルそれぞれ の曲げ剛性を算出した結果を表1に示す.トラスを設置して いないモデル a と比較して, ハットトラスを設置したモデル bの曲げ剛性は 1.36 倍, アウトリガートラスを設置したモデ ル c の曲げ剛性は 1.60 倍, 2 つのトラスを設置したモデル d の曲げ剛性は1.63 倍となった. これらの結果から,水平荷重 に対する建物の強度を増加させる働きはハットトラスより アウトリガートラスの方が大きいことが分かった.

また,解析モデルの総重量を調査した結果,モデル a,モ デル b, モデル c, モデル d の総重量はそれぞれ 5,994 [t], 6,037 [t], 6,230 [t], 6,323 [t]であった.

4. 火災条件

火災による解析モデルの変形は,火災の規模,面内位置, 火災発生階層, 延焼の有無など, 様々なパラメータにより変 化する.本稿では、火災が発生する層数を単層のみ、連続し た2層,連続した3層の3種類と設定し、いずれも延焼しな いものとした.そして、火災の発生階層、規模、面内位置と いう3つのパラメータを変化させ火災条件を設定した. 設定 した火災の規模と面内位置を図3に示す.1×1スパンを1ブ ロックと定義し、4、5、6、8、9、10、12、15 ブロックの規 模で計 12 種類を設定した. これらの火災条件を 4 種類の解 析モデルに適用し、合計で1,296種類の火災崩落解析を行っ た.

5. 解析結果

5-1 KI積算値と残存物高さの和の関係

本稿では、建物の崩壊形態を定量的に表すため、火災崩落 解析が終了した時点において,残存物を構成する全ての節点 の高さ方向の座標値の和を残存物高さの和と定義した.まず, モデル a に単層火災が発生する場合について,火災崩落解析 から得られた残存物高さの和と、それぞれの火災範囲におけ るKI積算値の関係を示したグラフを図4に示す.なお,縦軸 の値には,残存物高さの和を健全状態の建物の高さの和で割 ることによって無次元化したものを用いている.この図では, KI積算値がある値を超えるまでは残存物高さの和はほとん ど変化しないが,ある値を超えると残存物高さの和が急激に 減少を始めるという傾向が見られた.そこで,残存物高さの 和が健全な建物の高さの和の 90%以下まで減少した火災条 件の中で、最もKI積算値が小さいものにおけるKI積算値を 「崩壊開始の閾値」と定義した.この定義に従い、モデルa の単層火災における崩壊開始の閾値を求めた結果, 19.14 と なった.

次に、4つの解析モデルに対し、上の定義に従って崩壊開 始の閾値を求めた.その結果を表2に示す.この表から、単 層火災における崩壊開始の閾値はトラスを設置していない モデル a が最も大きくなったのに対し、2 層火災、3 層火災 における閾値はハットトラスとアウトリガートラスを両方 設置したモデル d が最も大きくなっていることが確認でき る. また, 火災発生層数が増加するにつれて, 崩壊開始の閾 値もそれぞれの解析モデルにおいて上昇している.このこと から,解析モデル間で崩壊開始の閾値を比較する場合は,火 災発生層数ごとに比較する必要があると考えられる.

5-2 曲げ剛性と崩壊開始の閾値との関係

トラス構造を設置したことにより増加した建物の強度と 崩壊開始の閾値との関係を調査するため、3章で算出した建 物の曲げ剛性と,崩壊開始の閾値の関係を火災発生層数ごと に示したグラフを図5に示す.この図より,崩壊開始の閾値

Hat truss (model b)

Outrigger truss (model c)

Fig. 2 Truss systems placed in the numerical model

Table 1 Flexural rigidity of the numerical models

Numerical model	EI [$MN \cdot m^2$]
model a	13,925.15
model b	19,047.61
model c	22,333.89
model d	22,757.98

Fig. 4 Relation between sum of KI values and sum of the height of remains after fire (Single layer fire)

model a model b model c model d Single 19.14 18.70 18.39 18.77 layer Double 32.06 32.81 32.63 33.86 layer Triple 46.21 48.70 46.70 50.14 layer

Table 2 Threshold of collapse in each condition

Fig. 5 Relation between flexural rigidity and threshold of collapse

はトラス構造によって増加された曲げ剛性には依存してい ないことが分かる. すなわちこれは, 建物の水平荷重に対す る曲げ強度を高めても, 必ずしも鉛直方向への崩壊を抑える 抵抗力は高まらないことを示している.

6. 結言

本稿では、火災範囲におけるKI積算値を利用して建物の崩 壊危険性を予測することを目的とし、様々な火災条件を設定 した後、火災範囲におけるKI積算値と残存物高さの和の関係 について調査した.その結果、火災範囲におけるKI積算値と

残存物高さの和の関連性を確認し, KI積算値が様々な火災 条件における建物の崩壊危険性予測に利用できる可能性が 示された.

また、水平荷重に対する建物の強度を増加させる働きを持 つ3種類のトラス構造について、火災による鉛直方向への崩 壊を抑制する効果を「崩壊開始の閾値」により評価した.そ の結果、トラス設置による建物の曲げ剛性の増加は、火災に よる鉛直方向への崩壊の抑制にはあまり寄与していないと いう結果が得られた.しかし、本稿では、異なるトラス構造 を設置した解析モデル同士の崩壊開始の閾値を比較したが、 それぞれ構造が異なり、建物変形時の応力伝達経路も異なる ため、同等に評価することは困難である.今後は、同一のト ラス構造を設置し、その部材の強度を変更することで、建物 の曲げ剛性と崩壊開始の閾値との関連性を調査する予定で ある.

参考文献

- [1] NIST NCSTAR 1: Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report of the National Constr3uction Safety Team on the Collapses of the World Trade Center Towers, (2005).
- [2] D. Isobe: An Analysis Code and a Planning Tool Based on a Key Element Index for Controlled Explosive Demolition, International Journal of High-Rise Buildings, Vol.3, No.4, (2014), pp.243-254.
- [3] 磯部大吾郎、レ ティ タイ タン:高層建築物の火災時 崩壊挙動に関する数値解析的検証、日本建築学会構造 系論文集,第76巻,第667号、(2011)、pp.1659-1664.