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Abstract 
 
In this paper, force control of link systems considering 
dynamical effects is carried out by using the parallel 
solution scheme, which was previously proposed and 
successfully applied to inverse dynamics calculations of 
flexible manipulators. Generally, inverse dynamics is 
calculated by using dynamic equations, and control torque 
for generated forces is calculated by using Jacobian 
matrices derived from kinematic equations. Two different 
sets of torque are summed in such cases. On the other 
hand, the parallel solution scheme calculates both types of 
torque in a single procedure, without using Jacobian 
matrices. The calculation is enabled by solving the 
equation of motion in the dimension of force, and by 
formulating the relationship between the calculated forces 
and joint torque in a matrix form, separated into terms of 
different parameters. Generated forces for the control can 
be considered simply by adding the values into one of the 
components in the equation, which is used for calculating 
inverse dynamics. The validity of the scheme is verified, 
in this paper, by carrying out a force control experiment 
on a simple link system where both generated forces and 
dynamical effects should be considered. 
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1. Introduction 
 
Recent developments in robotics have increased the 
requirements for mobility of robots as well as complexity 
in their tasks. One of the ways to maintain the stability of 
quick motion tasks is to consider the dynamics 
compensation by using dynamic equations. However, the 
generally used dynamic equations include variables that 
are interdependent between the constituting links, since 
they are evaluated in relative polar coordinates and in the 

dimension of torque. Accordingly, it becomes highly 
complicated to derive inverse dynamics of closed 
kinematic chains, or structurally transforming ones. Many 
researchers have developed their own ways [1-3] to solve 
the problem, by devising and implementing new schemes 
to handle the dynamic equations. On the other hand, Isobe 
developed a completely different way [4] for calculating 
inverse dynamics by using a finite element approach. The 
scheme is named the parallel solution scheme, since it 
computes nodal forces in parallel by using the equations 
of motion expressed in the dimension of force, and 
converts them to torque by using a matrix-form equation 
separated into individual terms of nodal forces, coordinate 
transformation, and member length. Therefore, the 
scheme can naturally deal with open- and closed-loop link 
systems independently, as well as those that gradually 
transform and change their dynamics. There is also no 
need to revise the basic numerical algorithm of the 
scheme, regardless of the stiffness of the constituting link 
member, whether it is rigid or flexible [5]. 
 
In this paper, we will discuss such cases where force 
control is required, as well as the dynamic compensation 
of the link system. Normally, control torque for generated 
forces and the inverse dynamics are calculated in different 
approaches; the former by using Jacobian matrices 
derived from kinematic equations, and the latter by using 
the dynamic equations. On the other hand, the former 
torque values are calculated in the same manner and with 
the same algorithm for calculating inverse dynamics in 
the parallel solution scheme. It is possible since the 
scheme originally handles the mechanical behavior of link 
systems in the dimension of force. The parallel solution 
scheme handles two different sets of joint torque in a 
single procedure, and additional derivation of Jacobian 
matrices or dynamic equations is not required. The 
validity of the scheme is verified by carrying out a force 
control experiment on a quick motion, two-arm link 
system holding an object, where both generated forces 
and dynamical effects should be considered. 
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2. The Parallel Solution Scheme  
 
In this section, the formerly proposed parallel solution 
scheme is briefly explained, by comparing the main 
equation for calculating inverse dynamics with that of 
conventional schemes. Readers should refer to papers [4] 
and [5] for further information. Additionally, handling of 
generated forces in nodal force vector is discussed, and a 
simple numerical example is shown.  
 
2.1 Comparison with Schemes Using Dynamic 
Equations 
 
Dynamic equations for link systems are generally derived 
by the Newton-Euler method or the Lagrangian method. 
In a summarized expression, the equations are written as 
 

fúg = [M(í)]f°íg+ fV (í; _í)g+ fG(í)g,       (1) 
 
where fúg  is the torque vector, [M ]  the inertial force 
matrix, fV g the centrifugal force and Coriolis force term 
vector, and fGg the gravity force term vector. í, _í, and °í 
within the parentheses are the relative variables of the 
angle, the angular velocity and the angular acceleration 
between each link, respectively. All of the parameters in 
the equation relate to each other since they are derived in 
relative polar coordinates and in the dimension of torque. 
Therefore, most parts of the equations must be revised 
when the structural configuration of the link system is 
changed.  
 
On the other hand, torque values are calculated by using 
the following equation in the parallel solution scheme 
[4,5]; 
 

fúng = [Ln][Tn]fPng,             (2) 
 
where fúng is the torque vector, fPng the vector related 
to nodal forces, [Tn]  the transformation matrix between 
global and elemental coordinates, and [Ln]  the member 
length matrix. The superscript on the upper right indicates 
the total number of links. The nodal forces are evaluated 
in an absolute Cartesian coordinate system, and in the 
dimension of force. The equation is completely separated 
into terms of different parameters, and each matrix has a 
clear physical meaning related to the modeled link system. 
The member length matrix [Ln] , for example, contains 
components in the dimension of length, which play roles 
in converting force to torque. Also, the configuration of 
the components in the matrix expresses the structural 
connectivity of the link system. The separation of the 
parameters makes the equation highly expansible and 
flexible, and thus the scheme becomes applicable to 
complex link systems without difficulty.  
 
An incremental nodal force vector fÅfg, required for the 
link system in motion between time t  and t+Åt , is 

derived by the following equation; 
 
fÅfg = fRgt Ä fFgt+

[M ](
1

åÅt2
fÅug Ä 1

åÅt
f _ugt Ä ( 1

2å
Ä 1)f°ugt),    

(3) 

 
where [M ] is the total mass matrix, fFg the external force 
vector, fRg  the internal force vector, fÅug  the 
incremental displacement vector, f _ug the velocity vector, 
and f°ug  the acceleration vector. β  is the integral 
parameter for Newmark’s β method [6], a widely used 
time integration scheme. The operation distance between 
each incremental step calculated from a target trajectory is 
used as an input for fÅug. The velocity and acceleration 
vectors can also be given directly as input data, but we 
used Newmark’s β method ( δ =1/2, β =1/4) for 
calculating these values in this paper. The values of the 
internal force vector fRg  will all actually become zero, 
since the consideration of the deformation of link 
members in the inverse dynamics calculation process is 
not required. The external vector includes information 
such as dead loads and other additional forces acting at 
nodal points. Each corresponding term in the incremental 
nodal force vector is then substituted into Eq. (2) to 
constitute the vector fPng. Although the scheme requires 
incremental calculation, it has been confirmed in previous 
works [4,5] that the calculation time in an actual control is 
suppressed to a practical value.  
 
2.2 Handling of Generated Forces in Nodal Force 
Vector 
 
If the control torque for generated forces is required in 
addition to the dynamic compensation, the torque values 
should be added, in the conventional schemes, to the right 
hand side of Eq. (1) as follows:   
 
fúg = [M(í)]f°íg+ fV (í; _í)g+ fG(í)g+ [J ]T fFGg,  (4) 

 
where [J ]  is the Jacobian matrix, and fFGg  is the 
generated force vector. The Jacobian matrix is derived 
from kinematic equations, and we need to do summation 
of these two different sets of torque in this case. 
 
On the other hand, the control torque for generated forces 
can be easily considered in the parallel solution scheme, 
by simply adding the generated force values to the vector 
related to nodal forces fPng,  in Eq. (2). The vector gives 
information of the nodal forces acting on the constituting 
link members (see Fig. 1), and is defined as 
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fPng =

8>>>>>><>>>>>>:
P1

P2

Å
Å
Pn

9>>>>>>=>>>>>>; ; where fPig =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

FiX

FiY

FiZPn
j=i+1 FjXPn
j=i+1 FjYPn
j=i+1 FjZ

FiûX

FiûY

FiûZ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
.

(5) 
 
Here, the subscripts i and j indicate the link numbers (i, j 
= 1~n), X, Y, Z the global coordinates, and φ  the 
rotational components, respectively. The 1st~3rd row 
components in fPig  are the nodal forces acting at the 
center of gravity, 4th~6th the sum of nodal forces acting at 
the tip of the i-th link member, and 7th~9th the moment of 
inertia acting around the center of gravity. The generated 
force values are added to each component in fPig, which 
can be specified in input data. Namely, there is no 
requirement for additional calculation of the Jacobian 
matrix or revision of the equation, etc., in spite of the 
consideration of the completely different types of torque 
values.  
 
2.3 Numerical Example 
 
A simple numerical test is carried out to verify the 
validity of the parallel solution scheme. A wall-trace task 
is given to a 2-link manipulator as shown in Fig. 2. A 
force value of 0.4 N is constantly generated at the tip of 
the manipulator against the wall. Figure 3 shows the joint 
torque curves of Joint 1, which are calculated for the task. 
The torque curve obtained from the parallel solution 
scheme is in perfect agreement with that from the 

conventional scheme, which is the sum of inverse 
dynamics and the control torque for the generated force. 
 
 
3. Control Experiments 
 
The parallel solution scheme is implemented into a force 
control system as shown in Fig. 4, in which the PID 
feedback, force feedback and feed-forward control are all 
combined in the design. A target trajectory based upon the 
Cartesian coordinates is given as an input, and control 

Fig. 1 Nodal forces acting on i -th link in an open-
loop n-link mechanism 
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Fig. 2 A wall-trace task for a 2-link manipulator

Fig. 3 Joint torque curves for the wall-trace task 
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Fig. 4 Outline of the force control system 
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torque values including the effects of generated forces are 
calculated successively in the PC as τ I.D.. The main 
purpose of developing the system is not to create another 
concept of a force controller, but simply to verify the 
accuracy of calculated outputs, and to check the 
performance of the calculation itself in actual control 
process. The force feedback value, which is obtained by 
using  
 

Ffeedback = KF (FG Ä FS),                     (6) 
 
is directly fed back into the calculation. Here, KF is the 
feedback gain for force, FG the target generating force and 
FS the actual value acquired from the force sensors. The 
calculation is carried out incrementally in each sampling 
time period. The torque values on all joints are obtained 
after the calculation is finished for each time period. For 
example, it is confirmed that the calculation takes 

approximately 0.7 ms by using a Celeron 1.1 GHz PC, 
which is short enough for practical use, when the 
sampling time is set to 10 ms. By adding frictional 
correction in motors and feedback values to τ I.D., the 
final control torque τ is obtained as follows: 
 

ú= J°qd +D _qd + fc +úI:D: + úfeedback,     (7) 
 
where J is the moment of inertia of motors, D the 
viscosity coefficient of motors, fc the dynamic friction 
force, and _qd  and °qd  the target angular velocity and 
angular acceleration, respectively. τ feedback is the PID 
feedback torque, which is obtained using 
 
úfeedback = KP (qd Ä q) +KIÜ(qd Ä q) +KD( _qd Ä _q),   (8) 

 
where q and _q are the actual angle and angular velocity 
acquired from the attached encoders, respectively. KP, KI 
and KD are the feedback gain for the angle, the integrated 
value and the angular velocity, respectively.  
 
Figure 5 shows a set of two manipulators used in the 
experiment, with hand devices to hold an object. Gearless 
motors are adopted, in this paper, to deliberately 
maximize the effect of dynamics and to verify the output 
of the parallel solution scheme. Feedback gain values 
used in the experiment are shown in Table 1. The 
manipulators are given a task to move a woodchip 
(weight: 15 g) along a circle path for two times, with a 
constant grasping force of 0.5 N. Figure 6 shows the 
rotational angle for each joint and the schematic diagram 
of the target motion. Torque curves for each joint are 
obtained during the control by using the parallel solution 
scheme as shown in Fig. 7. The value of inverse dynamics 
is considerably large compared to the total torque as 
shown in Fig. 8, and thus, it is desirable not to disregard 
the calculation of inverse dynamics in this kind of motion, 
to maintain the stability of the control. Figures 9 and 10 
show the control results of the rotational angle and the 
generated force. It is evident that the control results of 
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Fig. 5(a) Two manipulators holding an object 
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J1 J2 J3 J4 
 4.5 3.5 4.5 2.5 
 1.8 1.5 1.8 1.0 

 0.04 0.06 0.02 0.04 

0.00018 
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motion are in good agreement with the target. Although 
the control result of generated force contains high-mode 
oscillation that is assumed to be a white noise detected by 
the force sensor, the generated force is consistently and 

practically maintained to the target. These results confirm 
the validity of the torque values calculated by the parallel 
solution scheme. 
 

Fig. 7 Torque curves for two manipulators in  
force control 
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Fig. 8 Comparison of inverse dynamics against 
total torque 
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Fig. 10 Control result of generated force 
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4. Conclusion 
 
The formerly proposed parallel solution scheme is applied 
to force control of link systems, where a consideration of 
both generated forces and dynamical effects is inevitable. 
The numerical and experimental results show that the 
accurate values of control torque considering both effects 
are obtained by using the parallel solution scheme. The 
scheme does not require derivation of Jacobian matrices 
and revision of dynamic equations even in such cases, and 
the outside frame of the numerical algorithm remains the 
same. The scheme can be applied to complex systems 
where calculations of kinematic and dynamic equations 
are essentially difficult.  
 
The vector related to nodal forces, on which we focused 
in this paper, can contain values with both static and 
dynamic effects. Studies on inverse dynamics calculation 
and feed-forward control of flexible manipulators, which 
can be developed by using this feature, are in progress.  
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