
 

 

Feed-Forward Control of Link Mechanisms under  
Various Boundary Conditions by Using a Parallel Solution Scheme 

  

Abstract −−−− In this paper, we describe a parallel solution scheme 
for inverse dynamics, and its application to feed-forward control 
of link mechanisms under various boundary conditions. The 
conditions include such cases as open- and closed-loops, and 
even one that continuously changes its form from an open- to a 
closed-loop. The dynamic equations conducted by generally 
used schemes such as the Newton-Euler method or the 
Lagrangian method, include interdependent variables between 
the constituting links which make it highly complicated to derive 
inverse dynamics of the closed-loop link mechanisms, or of the 
continuously transforming ones. The proposed scheme is 
developed by using the Finite Element Method (FEM), and 
evaluates the entire system as a continuum. The system is 
subdivided into finite elements, and the nodal forces are 
evaluated by equations of motion in a matrix form. The joint 
torque in the system is then calculated by converting the 
obtained nodal forces. Therefore, information from the entire 
system can be handled in parallel, which makes it seamless in 
application to open/closed-loop or continuously transforming 
mechanisms. The control results of link mechanisms under 
various boundary conditions reveal the possibility of using the 
proposed solution scheme for feed-forward control, independent 
of the system configuration of link mechanisms. 
 

I. INTRODUCTION 
 

Dynamic equations conducted by generally used schemes 
such as the Newton-Euler method or the Lagrangian method, 
include interdependent variables between the constituting 
links which make it highly complicated to derive inverse 
dynamics of closed-loop link mechanisms, or of continuously 
transforming ones. Generally, robotic tasks include motions 
that generate open and closed loops alternately, and the 
dynamic equations of the system (or the numerical algorithm) 
require instant revision during the motion. Therefore, a 
unified solution scheme for calculating the inverse dynamics 
is strongly desired, particularly for massive, quick robots 
controlled by force.  

Isobe and Nakagawa proposed the application of the Finite 
Element Method (FEM), a widely used computational tool for 
analyzing, for example, structures and fluids, to a control 
system of connected piezoelectric actuators, and achieved 

good control not only of the actuator itself but also of the 
entire system [1]. After finding that the FEM can be used as a 
control scheme of a continuum, Isobe et al. implemented the 
FEM in a two-dimensional solution scheme of inverse 
dynamics for open- [2] and closed-loop link mechanisms [3]. 
Taking advantage of the characteristic of the FEM, i.e., the 
capability of expressing the behavior of each discrete element 
as well as that of the entire continuous system, local 
information such as nodal forces and displacements can be 
calculated in parallel. The nodal forces are calculated 
incrementally in a matrix form, which does not require any 
revision of the outside frame, and the variables inside can be 
revised by simply changing the input data in the case of a 
physical change in the hardware system. The obtained nodal 
forces are then used to calculate the joint torque in the link 
systems. 

In this paper, we describe a three-dimensional version of 
the parallel solution scheme for calculating inverse dynamics 
of link mechanisms. Link mechanisms are modeled using 
linear Timoshenko beam elements with a single integration 
point.  Nodal forces for obtaining target trajectories are 
calculated using the FEM, and the joint torque of each link is 
calculated based on a matrix-formed conversion equation 
between nodal forces and the joint torque. Some numerical 
tests are carried out for several types of link mechanisms in 
order to verify the validity and flexibility of the scheme. The 
proposed scheme is also implemented in a control system to 
evaluate the performance under actual control with dynamics 
compensation, and some control experiments are carried out 
using a two-dimensional, nongear link mechanism, which can 
change its boundary condition in several ways.  
 

II. PARALLELL SOLUTION SCHEME FOR N-LINK 
MECHANISM 

 
A link mechanism constituted of a joint and a rigid link 

member, is modeled by using two Timoshenko beam 
elements with nodal points expressing the center of gravity 
and motors. Fig. 1 shows the general concept of the modeling. 
The total mass of two elements is concentrated at the nodal 
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point expressing the center of gravity. The mass of a motor is 
lumped at the corresponding nodal points.  

Fig. 2 shows the nodal forces (based on global coordinates) 
acting on the i-th link (i=1~n) in a three-dimensional 
open-loop n-link mechanism. The joint torque τix required 
around the x-elemental axis on the i-th link, for example, is 
determined by adding an i+1-th joint torque τ(i+1)x to the sum 
of inertia moments acting on this link, and is expressed by 
nodal forces Fiy and Fi Φ x based on elemental (or link) 
coordinates as follows: 

 

úix = liCFiy + li(
nX

j=i+1

Fj)y + Fiûx +ú(i+1)x,       (1) 

 
where liC is the length between the former joint and the center 
of gravity and li is the link length. By considering other 
components around the y- and z-axes, and arranging them into 

global coordinates (X, Y, Z) in a matrix form, the joint torque 
vector is expressed as 

 
fúng = [Ln][Tn]fPng,                        (2) 

 
where {Pn} is a vector related to nodal force, defined as 
 

fP ng =

8>>>>>><>>>>>>:
P1

P2

Å
Å
Pn

9>>>>>>=>>>>>>; ; where fPig =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

FiX

FiY

FiZPn
j=i+1 FjXPn
j=i+1 FjYPn
j=i+1 FjZ

FiûX

FiûY

FiûZ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
.  (3) 

 
The transformation matrix [Tn] is expressed as 

 
[Tn] = [hn][TnGE],                          (4) 

 
where [hn] is a correction matrix between x-y and z-x 
coordinate systems, which simply inverts their signs in the 
y-axis direction. [Tn

GE] is a transformation matrix between 
global and elemental coordinates which is expressed as 

 

h
TnGE

i
=

2666666666664

T1

T2 0

T3

Å
Å

0 Å
Tn

3777777777775
,

        
(5)

 

 
where 

 h
Ti

i
=

264 Ai 0 0

0 Ai 0

0 0 Ai

375
,               

(6a) 

and 
 h

Ai

i
=

264 cosûiXx cosûiY x cosûiZx

cosûiXy cosûiY y cosûiZy

cosûiXz cosûiY z cosûiZz

375
,

     

(6b)
 

 
where φ iXx, for example, represents the rotational angle 
between X-global and x-elemental coordinates. [Ln] is a 
matrix related to member length and is expressed as 

 
[Ln] = [T nÉ ][É

n],                         (7) 
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Fig. 1 Modeling of link mechanism by finite elements 

Fig. 2 Nodal forces acting on i -th link in an open-loop  
n-link mechanism 
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where [Tn

Λ ] is a transformation matrix between each 
elemental coordinate, and is expressed as 

 

h
TnÉ

i
=

2666666666664

T11 T12 T13 Å Å Å T1n

T22 T23 Å Å Å T2n

T33 Å Å Å T3n

Å Å Å Å
Å Å Å

0 Å Å
Tnn

3777777777775
.

      
(8)

 

 
[Tij] (i,j=1~n) is expressed using matrix [Ai] shown above: 

 
[Tij ] = [Ai][Aj ]

T
.                        (9) 

 
 [Λn] is expressed as  

 

h
Én

i
=

2666666666664

É1

É2 0

É3

Å
Å

0 Å
Én

3777777777775
,       

(10)

 
 

where 
 h

Éi

i
=

264 0 liC 0 0 li 0 1 0 0

liC 0 0 li 0 0 0 1 0

0 0 0 0 0 0 0 0 1

375
. (11) 

 
Information on the i+1~n link is summed by multiplying the 
[Ln] matrix by vector [Tn]{Pn}, which is the nodal force vector 
transformed into elemental coordinates. In cases of 
closed-loop link mechanisms, the above matrix is divided into 
multiple parts, as shown below, to fix the configuration of 
passive joints as well as the torque allocation undertaken by 
active joints.  

 

[Ln] =

"
La 0

0 Lb

#
                         

(12)

 
 
The suffixes a and b are the numbers of links (a+b=n) when 
the mechanism is divided into two parts. This is the only 
process that is different between the algorithms of open- and 
closed-loop link mechanisms, which of course, can be 
automatically alternated in the program. A vector related to 
incremental nodal forces acting on the i-th link is defined 

using the nodal numbers k (=2i): 
 

fÅpkg =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ÅfkX

ÅfkY

ÅfkZP2n+1
h=k+1ÅfhXP2n+1
h=k+1ÅfhYP2n+1
h=k+1ÅfhZ

ÅfkûX

ÅfkûY

ÅfkûZ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
.

                
(13)

 

 
Thus, the vector related to the nodal force acting on the i-th 
link at t+Δt is successively calculated using the above vector 
as follows: 

 
fPigt+Å t = fPigt + fÅpkg.             (14) 

 
The successive values of the n-link joint torque are then 
obtained by substituting (14) into (2). Newmark's β method 
(β=1/4) is used as the time integration scheme to solve the 
incremental kinematic equation [4].  

 
III. NUMERICAL EXAMPLES 

 
The parallel solution scheme is applied to the joint torque 

calculation of an in-plane open-loop mechanism as an 
example. In order to confirm the accuracy of the scheme, we 
compared the calculated torque curves with those obtained by 
the Newton-Euler method. Fig. 3(a) shows the target 
trajectory for a 1.0 s motion given in vertical plane for a 
three-link mechanism (length of each link: 40 cm; weight: 
215 g; center of gravity at midpoint). Figs. 3(b) and 3(c) show 
the torque curves obtained by using the conventional and the 
proposed schemes. As shown in Fig. 3(b), the accuracy of the 
torque values does not depend upon the number of 
incremental steps when we use the dynamic equations that 
supply exact solutions. In contrast, the proposed scheme 
depends upon the number of incremental steps (see Fig. 3(c)), 
since the torque values are calculated approximately by 
summing the incremental information of each step. However, 
the results agree well if a sufficient number of steps are 
chosen. The influence of incremental steps is discussed later 
in this paper. 

Although it needs special attention on the number of 
incremental steps, we can obtain torque curves for a 
closed-loop link mechanism (see Fig. 4(a)) or even those for a 
continuously transforming mechanism (see Fig. 4(b)) without 
revising any part of the numerical algorithm in the parallel 
solution scheme. This is one of the biggest merits of using the 
scheme. 
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IV. CONTROL EXPERIMENTS 
 

As mentioned before, the scheme yields an approximate 
solution by summing the incremental information of each step. 
Therefore, this slight difference in the calculation procedures 
must be investigated to enable application to a control system. 
The proposed parallel solution scheme is implemented into a 
control system as shown in Fig. 5, to investigate its 
performance when applied in actual control. The time 
possession of each process in the control procedure is shown 

in Fig. 6. There are two main calculation processes during the 
control. One is the calculation of inverse dynamics, which 
may differ, of course, between the conventional and the 
proposed schemes. The other is the calculation of control and 
output function, which is a process common to both schemes. 
The calculation time of inverse dynamics for each step is 
about three times longer than that when using the 
conventional dynamic equations. However, the process time 
is sufficiently short compared to the time of the entire process 
as shown in Fig. 6, when, for example, the sampling time is 
selected to be 10 ms.  

A link mechanism with no gear shaft attached to the motors 
is used in the experiments to maximize the effect of the 
dynamics. Input torque τ is calculated using 

 
ú= J _qd +Dqd + fc +úI:D: +úfeedback,      (15) 

 
where J is the inertial moment of motors, D is the viscosity 
coefficient of motors, fc is the dynamic friction force,τI.D. is 
the input torque calculated by FEM, and  qdand _qdare the 
target angle and angular velocity, respectively. The viscosity 
coefficient of motors D and the dynamic friction force fc are 

Fig. 3 Accuracy of torque curves against number of steps 
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(c) Proposed scheme  
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Fig. 4 Torque curves for various types of link mechanisms [3] 
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Fig. 5 Outline of the control system with parallel solution scheme 
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identified beforehand by simple experiments.τfeedback  is the 
PID feedback torque which is obtained using 

 
úfeedback = Ku(qdÄq)+KiÜ(qdÄq)+Kv( _qdÄ _q),  (16) 

 
where q  and _q  are the actual angle and angular velocity 
acquired from the attached encoders, respectively. Ku, Ki and 
Kv are the feedback gain for the angle, the integrated value 
and the angular velocity, respectively.  

A link mechanism with a constraint device, as shown in Fig. 
7, is used in the control experiment. PID feedback with 

feed-forward control using calculated inverse dynamics is 
applied. A target motion is given as shown in Fig. 8. Two 
open-loop link mechanisms are operated independently until 
3.0 s, when both arms are then connected by the constraint 
device and operate as one closed-loop link mechanism from 
that time on. Fig. 9 shows the joint torque curves for the 
continuous transformation, calculated by the proposed 
scheme during the control. Surplus forces are intentionally 
generated in the manipulator on the right-hand side during 
2.3~2.6 s, to enable a smooth connection. Therefore, the joint 
torque values of Joint 3 and Joint 4 slightly increase during 
that time period.  

Fig. 10 shows the control results for each joint. Except for a 
short time period during the connection stage, where surplus 
forces are acting in order for the constraint device to work 
smoothly, it is evident that the control gives good 
convergence against the target motion. Although the 
proposed scheme requires incremental and successive 
calculations in the algorithm, the result of the control 
experiment clearly shows that the performance of a control 

Fig. 6 Time possession of each process 
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system with this scheme presents no problem in actual use.  
 

V. CONCLUDING REMARKS 
 

The proposed solution scheme derives nodal forces in 
parallel and converts them to the joint torque, which can 
conveniently be applied to many types of link mechanisms 
under various boundary conditions. No revision of the basic 
numerical algorithm is required during the transformation 
process of the mechanisms. This function cannot be realized 
by using the conventional schemes based upon the generally 
used dynamic equations. It may achieve stability and 
smoothness in continuous motions of robotic architecture. 
The control results of link mechanisms under various 
boundary conditions reveal the possibility of using the 
proposed solution scheme for feed-forward control, 
independent of the system configuration of link mechanisms. 
Application of the scheme to flexible manipulators is 
scheduled. 
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