<u>平成29年度講義予定</u>

(10/4) 伝熱の応用と伝熱機器
 (10/11) 輻射伝熱
 (10/18) 相変化を伴う伝熱
 (10/25) 沸騰伝熱
 (10/25) 沸騰伝熱
 (11/8) 流動沸騰
 (11/15) 凝縮を伴う伝熱
 (11/15) 凝縮を伴う伝熱
 (11/22) 熱交換器の基礎
 (11/22) 熱交換器の基礎
 (11/27(月))[水曜日課] 物質伝達
 (12/6) 蒸気タービン・ガスタービン複合発電
 (12/13) 冷凍・空調・コジェネレーション
 (12/20) 定期試験

<u> 凝縮の現象とメカニズム (1/3)</u>

• 凝縮(condensation)

ー定圧力の気体の温度が、その圧力に対応した飽和温度よりも 低下すると、気体から液体への相変化を生じる現象である.

輦緕	(U)	分	狸
辣稲	U)	汸	3

凝縮発生の場所				
麦面:	凝縮	空間	間凝縮	
凝縮液	の形態	凝縮核生	三成の形態	
腹状 凝縮	汹状 凝縮	均貸 凝韜	不均質 凝縮	

エネルギー機器学 凝縮を伴う伝熱

凝縮の現象とメカニズム

凝縮の現象とメカニズム (2/3)

膜状凝縮 水平冷却管表面の膜状凝縮

滴状凝縮 水平冷却管表面の滴状凝縮

• 膜状凝縮(film-wise condensation)

凝縮した液体が冷却小体面上に連続した液膜を形成

 ・ 満状凝縮(drop-wise condensation) 凝縮液体が固体面上に液滴を形成

※凝縮現象が生じている領域の大きさによっては、双方の形態が混在している 混合凝縮(mixed-wise condensation)として扱わなければならない場合もある。

<u> 凝縮の現象とメカニズム (3/3)</u>

• 直接接触凝縮(direct contact condensation)

蒸気が飽和温度以下の液体に直接接触して凝縮が生じるもの

• 空間凝縮

冷却面などの固体表面で発生する凝縮に対して, 雲や霧など のように空気中で凝縮が生成するもの

- 不均質凝縮(heterogeneous condensation)
- 空気中の塵埃などを核として凝縮が発生
- 均質凝縮(homogeneous condensation)

異物質の核が無く自己核生成(spontaneous nucleation)で凝縮が発生

層流膜状凝縮理論(1/5)

層流膜状凝縮理論

左図に示すように、飽和蒸気中に垂直 冷却平板を設置して、凝縮液膜が冷却平 板上端より面上に連続して生成される理 想的な状態を考える.液膜は重力により 冷却面の上端から生成し流下する.した がって、液膜厚さ*δ*は、冷却面上端より次 第に大きくなる.

また、ここでは、液膜厚さ、温度、流速は、 いずれも冷却平板に沿う水平方向、すな わち図の奥行き方向への変化がないもの と仮定する凝縮気体(蒸気)は飽和状態 (飽和温度 T_s)で、一様流速 u_∞ で鉛直下 向きに流れているものとする.添字は、lは液膜、vは蒸気を表す.

層流膜状凝縮理論(2/5)

 ∂u

質量保存:

$$\frac{\partial u_i}{\partial x} + \frac{\partial v_i}{\partial y} = 0$$

 $\partial^2 u$

(1)

(4)

(5)

運動量保存:

$$u_{i} \frac{i}{\partial x} + v_{i} \frac{i}{\partial y} = v_{i} \frac{i}{\partial y^{2}} + C \quad l = l, v \quad (2)$$

$$C = \begin{cases} 0 & i = v \\ g \frac{(\rho_{l} - \rho_{v})}{\rho_{l}} & i = l \end{cases} \quad (3)$$

エネルギー保存:

(液膜)
$$u_l \frac{\partial T_l}{\partial x} + v_l \frac{\partial T_l}{\partial y} = \alpha_l \frac{\partial^2 T_l}{\partial y^2}$$

 ∂v .

(茲気)

$$i = v$$
$$i = l$$
$$w_{l} \frac{\partial^{2} T_{l}}{\partial y^{2}}$$

$$Cx \quad Cy \quad Cy$$

 $T = T_{sat} = - \overline{z}$

層流膜状凝縮理論(3/5)

(6)

(7)

気液界面の質量約り合い

層流膜状凝縮理論(4/5)

したがって.

$$\rho_l v_l - \rho_l u_l \frac{\mathrm{d}\delta}{\mathrm{d}x} = \rho_v v_v - \rho_v u_v \frac{\mathrm{d}\delta}{\mathrm{d}x} \tag{9}$$

この他、冷却面上の速度および温度の条件から、

y = 0: $u_1 = 0$, $v_1 = 0$, $T_1 = T_{y_1}$ (10)

蒸気が一様流の場合:
$$y = \infty$$
: $u_y = u_\infty$ (11)

蒸気が静止している場合:
$$y = \infty$$
: $u_y = 0$ (12)

(1)~(5)の連立偏微分方程式を基礎式として、(6)~(12)で与えられる境界条 件のもとで解く.その結果,液膜層およびその上に形成される蒸気流の境 界層に対して温度および速度分布が得られる.

層流膜状凝縮理論(3/5)

気液界面(凝縮液膜面)においては、液膜温度 T」は飽和温 度 T_{ea}に等しいものとする. また, 気液界面では液膜の流速 uと蒸気の流速u、が等しい(滑りなし条件)と仮定し、下記の 境界条件を設定する.

$$y = \delta: \quad T_l = T_{sat}, \quad u_l = u_v \tag{6}$$

さらに、気液界面における剪断力の釣り合い条件から、

$$y = \delta: \quad \mu_l \frac{\partial u_l}{\partial v} = \mu_v \frac{\partial u_v}{\partial v}$$
(7)

気液界面の質量釣り合い

波騰

次に、気液界面における質量の流入と流出の釣り合いを考 える. 左図に示すように、気液界面を含む $d\delta \times dx$ 、奥行き 単位長さの微小検査体積を考える. 微小検査体積の各面を 通過して微小検査体積内に流入・流出する質量の釣り合い 条件から.

 $\rho_{v}u_{v}d\delta + \rho_{i}v_{i}dx - \rho_{v}v_{v}dx - \rho_{i}v_{i}d\delta = 0 \quad (8)$

<u> 層流膜状凝縮理論 (5/5)</u>

このような,液膜内と蒸気中の二層境界層問題に対して,相 似変数を導入して偏微分方程式を常微分方程式に変換し数値 解を求める方法や,プロフィール法による近似解法などを用い た解が求められている.

静止飽和蒸気の場合,液膜と水蒸気の界面における摩擦力 の影響で液膜流速が遅くなり,液膜が厚くなるためにこれが熱 抵抗となり熱伝達が低下する.ただし,液体のプラントル数が 大きい場合にはその影響はほとんど無視して良く,液体金属な どのようにプラントル数が非常に小さい場合に液膜と水蒸気の 界面における摩擦の影響が大きく現れることが知られている.

Nusselt の解析

<u>Nusseltの解析 (1/12)</u>

W. Nusselt は、層流膜状凝縮理論で述べた垂直冷却面上の 飽和蒸気の凝縮に関して、<u>凝縮液膜の周囲の飽和蒸気が静</u> 止している($u_v = v_v = 0$)とすることにより問題を簡略化して解 <u>析を行った</u>. ヌセルトはその解析において、凝縮液膜の流下速 度がきわめて小さいと仮定することで、液膜内の慣性力項を無 視し、界面の剪断力の効果を無視した. この Nusseltによる解 析を Nusseltの水膜理論 (Nusselt's liquid-film theory)という.

上記の仮定および $\rho_v << \rho_I$ であるとすることにより, 液膜の 運動方程式(2)および式(3)は, 次のように簡略化される.

<u>Nusseltの解析 (2/12)</u>

$$\frac{\partial^2 u_i}{\partial y^2} = -\frac{g}{v_i} \tag{13}$$

このとき,液膜流に対する境界条件は,

$$y = 0: \quad u_l = 0 \tag{14}$$

$$y = \delta: \quad \mu_l \frac{\partial u_l}{\partial y} = 0 \tag{15}$$

となる. 式(13)を積分して以下の液膜流速の式を得る.

$$u_l = -\frac{g}{v_l} \left(\frac{y^2}{2} - \delta y \right) \tag{16}$$

従って、液膜内水平断面(液膜厚さ δ)内の平均流速 u_m は、次式で表される.

$$u_m = -\frac{1}{\delta} \int_0^\delta u_l \, \mathrm{d}y = \frac{g\delta^2}{3\nu_l} \tag{17}$$

<u>Nusseltの解析 (3/12)</u>

一方,液膜のエネルギー方程式(4)は、対流項が無視できることから下記 の通り簡略化される。

$$\frac{\partial^2 T_l}{\partial y^2} = 0 \tag{18}$$

ここで、下記の境界条件

$$y = 0: \quad T_l = T_w \tag{19}$$

$$y = \delta$$
: $T_l = T_{sat}$

を適用して、式(18)を積分することで、液膜内の温度分布が次式のように得 られる.

$$T_{l} = \left(T_{sat} - T_{w}\right)\frac{y}{\delta} + T_{w}$$
(20)

<u>Nusseltの解析 (4/12)</u>

凝縮熱量の釣り合い

$$\dot{Q}(\delta) = L_{lv}\rho_l u_m \delta = L_{lv} \frac{\rho_l g \delta^2}{3\nu_l} \delta = \frac{\rho_l L_{lv} g \delta^3}{3\nu_l} \quad (21)$$

このように、Nusseltの解析では、まず、液膜内の流

左図に示すように、液膜の xから x+dxまでの、長さ

Nusselt <u>の解析 (5/12)</u>

従って、液膜厚さ δの微小変化に対する凝縮潜熱の変化 dÖ(δ)は、

$$d\dot{Q}(\delta) = \dot{Q}(\delta + d\delta) - \dot{Q}(\delta) = \frac{\rho_l L_{l\nu} g}{3\nu_l} \left[(\delta + d\delta)^3 - \delta^3 \right] = \frac{\rho_l g L_{l\nu}}{\nu_l} \delta^2 d\delta$$
⁽²²⁾

となる、ただし、上式の最右辺においてに関する 2次以上の微小項は無視 した,一方,上式で表される凝縮潜熱量の変化分 d0とは,区間 dxで凝縮 する水蒸気の潜熱量であり、区間 dxで液膜から冷却面に移動する伝熱量 dO.,に相当する. 液膜内の温度分布は直線分布として.

$$d\dot{Q}_{w} = -k_{l} \frac{\partial T}{\partial y} \bigg|_{y=0} dx = -k_{l} \frac{T_{sat} - T_{w}}{\delta} dx$$
(23)

Nusselt の解析 (6/12)

式(22)と式(23)より, $d\dot{Q}_w + d\dot{Q} = 0$ を考慮すると,

$$k_{l} \frac{T_{sat} - T_{w}}{\delta} dx = \frac{\rho_{l} g L_{lv}}{\nu_{l}} \delta^{2} d\delta$$
(24)

となる、上式を、境界条件 x = 0: $\delta = 0$ のもとで積分すると、液膜厚さ δ は 以下のように求められる.

$$\delta = \left[\frac{4k_l v_l (T_{sat} - T_w) x}{\rho_l g L_{lv}}\right]^{1/4}$$
(25)

ここで求めた液膜厚さδを式(16)や式(19)に代入して、液膜内の流速分布 や温度分布を求めることができる.

<u>Nusseltの解析 (7/12)</u>

<u>Nusseltの解析 (8/12)</u>

また,液膜流の局所Nusselt数 Nu_xは次式で与えられる.

$$Nu_{x} = \frac{h_{x}x}{k_{l}} = k_{l} \left[\frac{x^{4}\rho_{l}gL_{lv}}{4k_{l}\nu_{l}(T_{sat} - T_{w})x} \right]^{1/4} = 0.707 \left[\frac{gx^{3}/\nu_{l}^{2} \cdot \nu_{l}/\alpha_{l}}{c_{pl}(T_{sat} - T_{w})/L_{lv}} \right]^{1/4}$$
$$= 0.707 \left[\frac{Ga_{x} \cdot Pr_{l}}{H} \right]^{1/4}$$
(28)

ここで、上式における無次元数は、それぞれ次の通り定義される.

$$Nu_{x} = \frac{h_{x}x}{k_{l}}, \quad Ga_{x} = \frac{x^{3}g}{v_{l}^{2}}, \quad Pr_{l} = \frac{v_{l}}{\alpha_{l}}, \quad H = \frac{c_{pl}(T_{sat} - T_{w})}{L_{lv}}$$
(29)

これらの無次元数における物性値は.液膜表面温度(蒸気の飽和濃度)と 冷却面温度の平均温度として定義される膜温度における値を用いる.

<u>Nusseltの解析 (9/12)</u>

式(29)で, Ga_x を局所 Galileo 数といい, また, Hは凝縮に関する 顕潜熱比 (ratio of sensible and latent heat) と呼ばれるものであり, 飽和凝縮液が冷 却面温度まで過冷却する場合の顕熱量と凝縮潜熱の比を表しており, 凝縮 に限らず相変化を伴う伝熱では重要な概念である.

垂直冷却平板の場合,板の長さ $x = x_0$ にわたる平均熱伝達率hは,温度差が場所によらず一定であるから,局所熱伝達率の平均で与えられる.

$$\overline{h} = \frac{1}{x_0} \int_x^{x_0} h_x dx = \frac{4}{3} h_{x=x_0}$$
(30)

従って、 $x = x_0$ の垂直冷却版における平均 Nusselt 数 Nu_m は、

$$Nu_{m} = 0.943 \left(\frac{Ga_{x=x_{0}}Pr_{l}}{H}\right)^{1/4}$$
(31)

<u>Nusselt の解析 (10/12)</u>

膜状凝縮では、式(17)で与えられる液膜内の平均流速 u_m を用いて、凝縮液膜流に対して、膜 Reynolds数 (film Reynolds number) Re_f を以下のように定義する.

$$Re_f = \frac{4\delta u_m}{v_l} \tag{32}$$

ー般に、 $Re_f \leq 1400$ の条件では、液膜流は層流であるとされるが、 $Re_f \geq 30$ の条件でも凝縮液膜状にさざ波が発生することが報告されている.

<u>Nusseltの解析 (11/12)</u>

Nusseltの解析によって求められた膜状凝縮の熱伝達率は、実測値と比較 すると30%小さくなることが知られている。その原因として、① Nusseltの解 析では液膜内の対流項を無視したが、実際にはその影響が無視できない こと、② 液膜流においてさざ波などが発生し、その乱れの影響があること、 ③ 実際の凝縮では、純粋な膜状凝縮のみは実現されず、滴状凝縮との 混合凝縮になっている場合があることなどが挙げられる。

式(21)と式(32)より,

$$\dot{Q} = L_{l\nu}\rho_l \frac{V_l}{4}Re_f \tag{33}$$

ここで, *Q*は, 平板状 *x*の位置までの全伝熱量を表す. また, 同時に *Q*は平 均熱伝達 *h*を用いると,

水平円管表面の膜状凝縮

$$\dot{Q} = x\overline{h}(T_{sat} - T_w) \tag{34}$$

(35)

と表されることから,

$$Re_{_f} == rac{4x\overline{h}(T_{_{sat}}-T_{_w})}{L_{_{lv}}\mu_l}$$

<u>Nusseltの解析 (12/12)</u>

式(35)および式(31)から (T_{sat} - T_w)を消去すると、次式が得られる.

$$\frac{\overline{h}(v_l^2/g)^{1/3}}{k_l} = 1.47 R e_f^{-1/3}$$
(36)

上式の左辺分子の $(v_l^2/g)^{1/3}$ は長さの次元を有している. v_l は液膜の動 粘度であり, gは液膜に作用する力を表すものであることから, $(v_l^2/g)^{1/3}$ は液膜の厚さに関わる物理量であると考えられる. また, 左辺全体は Nusselt 数と同形の無次元数になり, これを凝縮数 (condensation number) という.

※垂直平板が,垂直と ϕ の角度をなす場合(傾斜平板の場合)には,平板 に沿う方向の重力加速度成分は,gcos ϕ となる.従って,式(2)および(3)の 運動方程式において,g \rightarrow gcos ϕ の置き換えをすればよい.

水平円管表面の膜状凝縮(1/5)

左図に示すように、水平円管の表面上で膜状凝縮が生じている場合、円管の曲率が小さく、円管表面に沿う方向の距離が短い場合には、層流液膜として扱って差し支えない. Nusseltの解析を左図の水平円管に適用すると、質量保存および運動量保存の式は以下のようになる.

$$\frac{1}{r_0}\frac{\partial u_l}{\partial \phi} + \frac{\partial v_l}{\partial y} = 0$$
(37)

水平円管周りの 膜状凝縮

$$v_l \frac{\partial^2 u_l}{\partial v^2} + g \sin \phi = 0$$
 (38)

ここで、 r_0 は円管半径、 ϕ は頂部からの角度を示す.また、境界条件は次の通りである.

<u>水平円管表面の膜状凝縮 (2/5)</u>

$$y = 0: \quad u_1 = 0$$
$$y = 0: \quad \frac{\partial u_1}{\partial y} = 0$$

(39)

式(38)を式(39)の境界条件で積分すると、液膜の平均流速 u_mおよび液膜 流量 *m*は次式で与えられる.

$$u_m = \frac{g\delta^2}{3\nu_l}\sin\phi \tag{40}$$

$$\dot{m} = \rho_l u_m \phi = \frac{\rho_l g \sin \phi}{3\nu_l} \delta^3$$
⁽⁴¹⁾

<u>水平円管表面の膜状凝縮 (3/5)</u>

従って,液膜厚さを求める微分方程式は次式となる.

$$\dot{Q}(\delta) = -k_{l} \frac{\partial T}{\partial y} (dx \cdot 1) = L_{lv} \rho_{l} u_{m} \delta$$

$$\frac{k_{l}}{\delta} (T_{sat} - T_{w}) r_{0} d\phi = \frac{\rho_{l} g L_{lv}}{3\nu_{l}} (\delta^{3} \sin \phi) \qquad (42)$$

ここで、 $\delta \sin^{1/3} \phi = t$ と変数置換すると、

$$\frac{k_l}{\delta} (T_{sat} - T_w) r_0 \frac{\sin^{1/3} \phi}{t} d\phi = \frac{\rho_l g L_{lv}}{3\nu_l} d(t^3)$$
(43)

$$\frac{k_l}{\delta} (T_{sat} - T_w) r_0 \int_0^{\phi} \sin^{1/3} \phi \mathrm{d}\phi = \frac{\rho_l g L_{lv} t^4}{4\nu_l} + C$$
(44)

水平円管表面の膜状凝縮 (4/5)

管長部 $\phi = 0$ において液膜厚さが有限である条件から、式(44)における積分定数 C=0となる. 従って、液膜厚さ δ は次式で与えられる.

$$\delta = \left[\frac{2k_l v_l (T_{sat} - T_w)}{\rho_l g L_{lv}}\right]^{1/4} \frac{1}{\sin^{1/3} \phi} \left[\int_0^{\phi} \sin^{1/3} \phi d\phi\right]^{1/4}$$
(45)

上式において $d(=2r_0)$ は管の直径である. 局所熱伝達率 h_ϕ は次式で与えられる.

$$h_{\phi} = \frac{k_l}{\delta} = \frac{k_l}{d} \left[\frac{2k_l v_l (T_{sat} - T_w)}{d^3 \rho_l g L_{lv}} \right]^{-1/4} \sin^{1/3} \phi \left[\int_0^{\phi} \sin^{1/3} \phi d\phi \right]^{-1/4}$$
(46)

水平円管表面の膜状凝縮 (5/5)

管壁温度が一定で、温度差が至る所で一定になるから、これを管周囲にわたり積分平均することにより、平均凝縮熱伝達率 h が次式で与えられる.

$$\overline{h} = \frac{1}{\pi} \int_0^{\pi} h_{\phi} d\phi = 0.729 \left(\frac{k_l^3 \rho_l^2 g L_{lv}}{\mu_l (T_{sat} - T_w) d} \right)^{1/4}$$
(47)

従って, 平均 Nusselt数は

$$\overline{Nu} = 0.729 \left(\frac{Ga \cdot \Pr_l}{H}\right)^{1/4}$$

$$Ga = \frac{x^3 g}{v^2} \qquad H = \frac{c_p (T_{sat} - T_w)}{L_{lv}} \quad \Pr = \frac{v}{\alpha} = \frac{\mu c_p}{k}$$
(48)

管群の膜状凝縮

<u>水平円管表面の膜状凝縮 (1/3)</u>

垂直配列管群による凝縮

左図に示すような,垂直配列管群の表面で凝縮が生じ る場合,上部の管における凝縮液が流下し下位置の管に かかる,イナンデーション (inundation)の影響により,下 部の管ほど液膜が厚くなり,その結果,凝縮熱伝達率が 低下する.

いま,上部の管の緩衝液が,すべて下部の管の頂点から流入すると仮定する,垂直配列管群にNusseltの解析を 適用すると、2段目以降の管では、管頂部における液膜厚 さが,上部における最下点の流量で決定されることになる. いま,初段の最下点($\phi = \pi$)における流量は、

水平円管表面の膜状凝縮 (2/3)

2段目の管における頂部 $\phi = 0$ の液膜厚さは,

$$\delta\Big|_{\phi=0} = \left[\frac{3\nu_i \dot{m}}{g\sin\phi}\right]_{\phi=0}^{1/3}$$
(51)

で与えられ、先に求めた液膜厚さに関する方程式(式(45))の境界条件を 与えることになる.これを適時 n段の管に適用すると、n段目における凝縮 量 m_n は、

$$\dot{m}_{n} = \dot{m}_{1} \left[\left(n - 1 \right) + \frac{\int_{0}^{\phi} \sin^{1/3} \phi \mathrm{d}\phi}{\int_{0}^{\pi} \sin^{1/3} \phi \mathrm{d}\phi} \right]^{-3/4}$$
(52)

水平円管表面の膜状凝縮 (3/3)

これが、*n*段における総凝縮量を与えることに注意しなければならない. n段の管群の1段あたりの平均凝縮量は、 $G_1 n^{3/4} / n = G_1 n^{-1/4}$ となり、n段の水平管群全体の平均熱伝達率hは、

で与えられる. ここで, <u>h</u>uは式(47)で求められる単一円 管の場合の平均熱伝達率である. 左図に鉛直列の凝 縮量の計算例を示す.

不凝縮気体と凝縮気体が 混在する場合の凝縮

<u>不凝縮気体と凝縮気体が</u> 混在する場合の凝縮 (1/3)

単一成分の飽和蒸気では、蒸気圧力 p_v は至るところで一定で全圧 p_i に等 しく、温度はその圧力に対応する飽和温度 T_{sal} になっている.この中に一様 温度の固体面($T_w < T_{sal}$)を置いて凝縮が生じた場合の凝縮液膜の表面温 度は T_{sal} となる.一方、混合気体で、各成分気体の凝縮温度が大きく異 なっている場合、たとえば空気中の水蒸気が凝縮する場合のように、凝縮 気体(この場合は水蒸気)と不凝縮気体(この場合は空気)が混在している 場合、上図に示すように、凝縮の進行にともなり凝縮液膜界面の蒸気分圧 が低下し、それに伴って飽和温度が次第に低下する.

<u>不凝縮気体と凝縮気体が 混在する場合の凝縮 (2/3)</u>

気体分子の挙動という観点から考えると、凝縮にともなって界面近傍に 蒸気の濃度勾配が発生し、これを駆動力として凝縮気体の分子が拡散し、 界面に供給される.不凝縮気体が混在する場合、この凝縮気体の拡散に よって不凝縮気体の分子も界面に運ばれる.その結果、凝縮の進行に 伴って不凝縮気体の分子が界面近傍に蓄積する.この不凝縮気体の蓄積 によって界面近傍の凝縮気体分子が希薄になるとともに、不凝縮気体の 分子と衝突(拡散)しながら凝縮界面に到達する気体分子が少なくなる.す なわち、

①凝縮気体の拡散が妨げられること

②界面における凝縮気体の分圧が低下し、飽和温度が低下すること

③それによって凝縮液膜内の伝熱の駆動力である固体面温度と気液界面 の温度の差が小さくなること

などの理由から, 微量の不凝縮性気体が混在することにより, 凝縮伝熱量 は著しく低下する.

<u>不凝縮気体と凝縮気体が</u> <u>混在する場合の凝縮 (3/3)</u>

一般に、凝縮気体に対して不凝縮気体が質量割 合で約4%程度混入すると、平均熱伝達率が約 80%低下する. Meisenburgらは、垂直円管周り の空気を含む水蒸気の凝縮実験より、以下の平 均熱伝達率に関する実験式を与えている.

 $\overline{h} = 0.67 \left(\frac{k_l^3 \rho_l^2 g L_{lv}}{\mu_l (T_{sat} - T_{w}) x_0} \right)^{1/4} G_r^{-0.11}$

ただし、 $0.001 \leq G_r \leq 0.04$, $80 \leq T_{sat} \leq 120 \circ$ C, G_r は空気 '不凝縮気体の質量割合である. この場合,液膜が乱流となるため,空気の割合が約 4%に増加した場合の熱伝達率の低下が約 30%となっている.

<u> 滴状凝縮 (2/2)</u>

- 凝縮液が冷却面上で液膜を形成するか、滴状になるかは、冷却面の材質 や表面状態、凝縮物質との組み合わせなど様々な条件に依存する.
- これらの条件から形成される固 気 液間の界面エネルギーの大小関係, すなわちぬれ性 (wettability)に因るところが大きい.
- 滴状凝縮は、液滴の様々な挙動、すなわち、発生、成長、合体、移動や伝熱面からの離脱などに影響をうけることは明らかであるが、これらに影響を及ぼすものとして、下表に示す因子が考えられる、これからも冷却面の表面性状、すなわち、先に述べたぬれ性が大きな影響を及ぼすことがわかる。
- 冷却面表面のぬれ性を改善して良好な滴状凝縮を実現し、凝縮熱伝達 を促進するために、様々な表面処理方法が用いられている。

表 滴状凝縮熱伝達率に影響を及ぼす因子

物質の種類	蒸気、萎縮面、表面被覆あるいは促進剤、不萎縮気体
熟的あるいは 熱力学的条件	蒸気温度,蒸気圧力(→飽和温度),凝縮面表面温度, 熱減束,冷却条件,不凝縮気体濃度
幾何学的条件	凝縮室の形状と寸法,凝縮面の形状と寸法, 凝縮面の向き (外力に対する),冷却側の幾何学的条件
表面条件	あらさ、被覆あるいは促進剤の厚さ、表面エネルギー (接触角)、表面のよごれ、表面に影響を及ぼす不純物
液滴に作用するカ	蒸気速度、液滴離脱に影響する外力

<u>問題 6-1</u>

大気圧の水蒸気が、垂直よりの傾斜角30度の平板冷却面上 (冷却面温度 $T_w=20^{\circ}$ C)で膜状凝縮している、この場合の、板上 端から 15cmの位置における、(1)液膜厚さ δ 、(2)平均流速 u_m 、 (3)局所熱伝達率 h_x を求めなさい。 ただし、水の物性値は膜温度における以下の値を用いること。 動粘度: $v_l = 0.475 \times 10^{-6} \text{ m}^2/\text{s}$ 熱伝導率: $k_l = 0.652 \text{ W}/(\text{m} \cdot \text{K})$ 比熱: $c_l = 4.192 \text{ kJ}/(\text{kg} \cdot \text{K})$ 、密度: $\rho_l = 981.9 \text{ kg}/\text{m}^3$) 凝縮潜熱: $L_{lv} = 2256.9 \text{ kJ}/\text{kg}$

<u>問題 6-1 解答の方針</u>

冷却平板が水平と角度 φ をなす場合, 図に示すように, 冷却 面に総方向の重力の加速度の成分は, gcosφ であるから,

$$u_l = -\frac{g\cos\phi}{v_l} \left(\frac{y^2}{2} - \delta y\right)$$

m

また, x断面における液膜厚さ δ は,

 $\delta = \left[\frac{4k_l v_l (T_{sat} - T_w) x}{\rho_l g \cos \phi L_{h_v}}\right]^{1/4} =$

gcos¢ 合却而

> 傾斜平板における 重力の作用成分

<u>問題 6-2</u>

1気圧の飽和水蒸気内に置かれた,外径 d = 20 mmの水平 冷却管の表面温度を 60° で一定に保っている.管表面で均一 な膜状凝縮が生じているとして平均凝縮熱伝達率 \bar{h} を求めよ.

計算に必要な水の物性値は、膜温度 $T_f = (T_w + T_{sat})/2$ における値を用いることとする。 $T_f = (T_w + T_{sat})/2 = (60 + 100)/2 = 80$ °C であるから、水の密度 $\rho_l = 971.8$ kg /m³ 、粘度 $\mu_l = 0.358 \times 10^{-3}$ Pa · s 、熱伝導率 $k_l = 0.672$ W /(m · K)、 凝縮潜熱 $L_{lv} = 2256.9$ kJ /kg とする.