# Micro Electro MEMS利用による Mechanical Systems MEMS利用による 交通振動計測の可能性検証





#### 社会の二一ズと工学的解法 Background



木曽川大橋 Built in 1963. Located in Mie prefecture. A penetrating crack was found by a staff of MLIT in 2007. If he didn't find the crack ,the bridge might collapse.





#### 求められる点検手法 低コスト・技術者に依らない



振動多点計測

- ・安全(コスト改善)
- ・高い客観性
- ・低コスト

| 技術的課題                    |
|--------------------------|
| 設置の労力                    |
| センサ費用                    |
| 厳しい条件                    |
| (計測位置 時刻同期)<br>加振条件 etc. |
|                          |

# 適用範囲の広い分析手法



Estimated modes shapes matrix



# 数値計算によるFDD法の確かめ

#### 車両橋梁相互作用モデル(VBI)



| The parameters of Vehicle |           |                |                           |
|---------------------------|-----------|----------------|---------------------------|
| Sprung                    | Mass      | $m_s$          | 18000[kg]                 |
|                           | Stiffness | $K_s$          | $1.0 \times 10^6 [kg/s2]$ |
|                           | Damping   | C <sub>s</sub> | $1.0 \times 10^4 [kg/s]$  |
|                           | Inertia   | $I_P$          | 64958[ <i>kg m</i> 2]     |
|                           | Distance  | l              | 1875[m]                   |
| Unsprung                  | Mass      | $m_u$          | 1100[kg]                  |
|                           | Stiffness | $k_u$          | $3.5 \times 10^6 [kg/s2]$ |
|                           | Damping   | Cu             | $3.0 \times 10^4 [kg/s]$  |

| Parameter of Bridge     |    |                            |  |  |
|-------------------------|----|----------------------------|--|--|
| Flexural<br>Stiffness   | ΕI | $1.56 \times 10^{10} [Nm]$ |  |  |
| Mass per<br>unit length | ρΑ | 3000[kg/m]                 |  |  |

### 路面凹凸と損傷モデル



#### **FDD法**による**特異値スペクトル**の比較 $G_{YY}^+(\omega) = \mathbf{U}(\omega)\mathbf{S}(\omega)\mathbf{U}^T(\omega)$



FDD法と正解値のモード形状の比較  $G_{YY}^+(\omega) = U(\omega)S(\omega)U^T(\omega)$ 





MAC值

### 実橋梁計測 measuring bridge

Matsumi Bridge 松美橋









### センサシステム開発 Development of Sensor System

Micro computer
Nucleo-F401RE

— Data logger — PC Serial communication between PC and Micro computer



実橋梁計測 measuring bridge



#### 特異値分解によるモード形状



たわみ1次モード



ねじれ1次モード



たわみ2次モード



### FDD法と特異値分解のモード形状のMAC値の比較





#### まとめ

### FDD法の適用性検証

- VBIシステムより簡易シミュレーションを行った
- 実稼働モードによる損傷検知の可能性が見えた
- 特異値分解との差異についてはさらなる考察が必要

#### MEMSセンサ開発

- 複数センサをGPSにより時刻同期を可能とした
- 実橋梁の交通振動計測を行った
- 交通振動よりモード形状を推定できた