

The Twenty-Seventh KKHTCNN Symposium on Civil Engineering November 10-12, 2014, Shanghai

Relationship between Spatial Singular Mode Angle and vehicle run speed

Kyosuke Yamamoto Mikio Ishikawa

Introduction

Indirect Approach (Vehicle Response Analysis) proposed by Yang et al. (2004) Bridge health estimation by only using acceleration on the vehicle

<u>Use Spatial Singular Mode Angle for damage detection index</u>

How to estimate SSMA

How to estimate SSMA

Background

Previous experiment on the real truss bridge

One scene of the experiment

Check the applicability of SSMA to detect damage of the bridge

- 1. when the vehicle including sensors changes
- 2. when vehicle speed varies gradually

by numerical simulation

Parameters of the Vehicles

Vehicle Parameters				Vehicle1	Vehicle2	
Sprung-	Mass	m_s	[kg]	18,000		
	Stiffness	k_{s1}	[kg/s ²]	$1.0 \times$	× 10 ⁶	
	(Front)					
	Stiffness	k_{s2}	$[kg/s^2]$	1.0×10^{6}	2.0×10^{6}	
	(Rear)					
	Damping	C_{S}	[kg/s]	$1.0 imes 10^4$		
	Inertia	I_P	[kg m ²]	649	958	
	Distance	l	[m]	1.8	75	
Unsprung-	Mass	m_u	[kg]	1,1	00	
	Stiffness	k_u	[kg/s ²]	3.5 ×	10 ⁶	
	Damping	C _u	[kg/s]	3.0 ×	10^{4}	

Parameters of the Bridges

BRIDGE PARAMETERS			
Span length	L	[m]	30
Mass	М	[kg]	18000
Flexural stiffness	EI	[kg/s]	1.56×10^{10}
Mass per unit length	ρΑ	[kg/m]	3000
Rayleigh coefficient	lpha eta		0.238 0.000
FEM PARAMETERS			
Element number			300
DAMAGE OF BRIDGE			
Damaged area		[m]	20~30
Stiffness decreasing		%	30
Mass decreasing		%	10

Results

Results

- This method is affected by parameters or speed of vehicles.
- -It is difficult to distinguish damaged bridges by using only existing SSMA.