一般化三変数板理論に基づいた 高階Hermite適合要素の開発

Development of higher-order Hermite conforming elements based on generalised three-variable theory

システム情報工学研究群構造エネルギー工学学位プログラム 主指導教官:山本亨輔准教授 副指導教官:松島亘志教授,庄司学教授

本研究は以下の投稿中の論文の内容を含む

Masaki Sakai and Kyosuke Yamamoto, "Derivation of Hermite family conforming quadrilateral elements and application to Kirchhoff-Love and Reissner-Mindlin plates", Computational Mechanics

本研究の一部内容は下記として公表済みである

Masaki Sakai and Kyosuke Yamamoto, "Explicitly Hermitian Quadrilateral elements with completeness for bending Kirchhoff-Love plates" Student Session Proceedings of The 42nd JSST Annual International Conference on Simulation Technology, Niigata, Aug, 2023, pp.50-53

KL板の数値シミュレーション 結果と考察(矩形モデル) 適合要素によりKirchhoff-Love板のたわみを計算 P9* P6 [8] P4

×10 ⁻³			P9*		F	°6 [8]			P4		F	3 [8]	
	Num. Elem	高階/適合*			高階/非適合*			一階/適合			一階/非適合		
-0.5	Liem.	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]
-1	4×4	1.7686	0.42	0.07	1.7570	-0.24	0.07	1.7680	0.39	0.05	1.6932	-3.86	0.06
0.4 0.2 0.3	8×8	1.7686	0.42	0.28	1.7670	0.27	0.24	1.7685	0.41	0.19	1.7144	-2.65	0.21
y 0 0.1 0.2 y x	12×12	1.7686	0.42	0.62	1.7675	0.36	0.55	1.7686	0.42	0.43	1.7224	-2.20	0.48
辺長=0.4m, 板厚=0.01m 培用名件: 四辺口白	16×16	1.7686	0.42	1.19	1.7680	0.39	0.99	1.7686	0.42	0.75	1.7254	-2.03	0.91
現界余件:凹辺固定 解析解=1.7686mm ^[36]	20×20	1.7686	0.42	1.97	1.7682	0.40	1.65	1.7686	0.42	1.24	1.7268	-1.95	1.32

P6(高階/非適合)が最高精度 → 解析解の有効桁数の問題 (おそらく, 適合要素を高階化すれば精度は上がり続ける)

 Alireza Beheshti. Novel quadrilateral elements based on explicit hermite polynomials for k kirchhoff-love plates. Computational Mechanics, Vol. 62, pp. 1199–1211, 2018.
 Stephen Timoshenko, Sergius Woinowsky-Krieger, et al. Theory of plates and shells, Vol. 2 McGraw-hill, New York, 1959. *節点の面外自由度が9である要素をP9要素と呼んでいる *P9要素は曲率まで連続 *P6要素はたわみ角までは連続だが曲率は非連続

KL板の数値シミュレーション | 結果と考察(非矩形モデル)

非矩形要素モデルの曲げ問題も高階/適合要素の精度が優れる

	×10 ⁻³			P9*		F	P6 ^[8]			P4		F	'3 [8]	
	0	Num.	高階/適合*			高階/非適合*			一階/適合			一階/非適合		
m	-0.5	Ltem.	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]	Disp. [mm]	Error [%]	Time [s]
	-1.5	4×3×4×4	1.3131	0.20	0.88	1.3222	0.91	0.75	1.3468	2.92	0.62	1.2550	-4.23	0.68
	0.5 0 0.2 0 0.2	4×3×8×8	1.3220	0.12	4.67	1.3135	0.23	3.69	1.3216	0.85	2.88	1.2626	-3.65	3.04
y 半径=0.4m, 板厚=0.01m 境界条件:円周固定 解析解=1 3113mm ^[36]	4×3×10×10	1.3121	0.13	8.33	1.3123	0.15	6.41	1.3180	0.58	4.95	1.2630	-3.62	5.24	
	4×3×12×12	1.3116	0.09	14.1	1.3117	0.10	10.3	1.3159	0.42	8.00	1.2630	-3.61	8.22	
	4×3×14×14	1.3113	0.07	21.7	1.3113	0.07	15.9	1.3146	0.32	12.0	1.2629	-3.62	12.0	

P6→P9やP3→P4のように適合要素化により顕著に精度改善 (適合要素は, 非矩形要素モデルを使う時に真価を発揮する)

8] Alireza Beheshti. Novel quadrilateral elements based on explicit hermite polynomials for bending of

kirchhoff-love plates. Computational Mechanics, Vol. 62, pp. 1199–1211, 2018.

[36] Stephen Timoshenko, Sergius Woinowsky-Krieger, et al. Theory of plates and shells, Vol. 2. McGraw-hill, New York, 1959.

本研究の位置づけ

	Bogner et al. (1965)	Beheshti (2018)	Beheshti (2020)	Bacciochi et al. (2020)	Bacciochi et al. (2023)	本研究
非適合要素の検討	0	0	0	0	0	0
適合要素の検討	0	\triangle	0	0	0	0
明示的なHermite多項式の使用	0	0	0	×	×	0
要素が矩形に限られない	×	0	×	0	×	0
せん断変形の考慮	×	×	×	×	×	0

システム情報工学研究群構造エネルギー工学学位プログラム修士論文発表会 2024年1月31日(水) 酒井真清『一般化三変数理論に基づいた高階Hermite適合要素の開発』 [6] Bogner et al. (1965) [8] Beheshti (2018) [9] Beheshti (2020) [10] Bacciocchi et al. (2020) [11] Bacciocchi & Fantuzzi (2023) **14**