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ABSTRACT 

 

The new vibration index, spatial singular mode, is proposed in this paper. The numerical 

simulation of VBI (Vehicle-Bridge Interaction) system is also carried out and shows the higher 

sensitivity of the spatial singular mode to a local bridge damage than traditional vibration 

indices. 

 

INTRODUCTION 

 

There still exist technical issues in vibration-based SHM (Structure Health Monitoring) in 

accuracy and applicability to civil structures such as bridges. Although many traditional indices 

such as eigen-frequency are global, bridge damage often occurs in local. The spatial singular 

mode is proposed in this study to implement this settlement. 

 

SPATIAL SINGULAR MODE 

 

The spatial singular mode is a singular mode of corrected acceleration responses of the vehicle 

travelling through the bridge. Only two accelerometers and GPS are installed on the vehicle. 

Positions of vehicle axles are used to correct the vibration data. 

 Considering a half car model shown in Fig. 1, the equation of motion is described as 

𝐌𝒛̈(t) + 𝐂𝒛̇(𝑡) + 𝐊𝒛(𝑡) = 𝒇(𝑡) (1) 

where 𝒛(𝑡) and 𝒇(𝑡) are the (displacement responses of the vehicle) and input (the external  
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Fig. 1 VBI system 

force) which are given by 

𝒛(𝑡) =

{
 

 
𝑧𝑠1(𝑡)

𝑧𝑢1(𝑡)

𝑧𝑠2(𝑡)

𝑧𝑢2(𝑡)}
 

 
, 𝒇(𝑡) = {

0
𝑐𝑢𝑢1̇(𝑡) + 𝑘𝑢𝑢1(𝑡)

0
𝑐𝑢𝑢2̇(𝑡) + 𝑘𝑢𝑢2(𝑡)

} 

 

(2) 

where 𝑧𝑠𝑖(𝑡), 𝑧𝑢𝑖(𝑡) and 𝑢𝑖(𝑡) are sprung-mass displacement, unsprung-mass displacement 

and input displacement, respectively. The subscript 𝑖 denotes the front axle (𝑖 = 1) and the 

rear axle (𝑖 = 2). 𝐌, 𝐂 and 𝐊 are mass, damping and stiffness matrices and given by 

𝐌 = [

𝑚𝑠 2⁄ 0 𝑚𝑠 2⁄ 0

𝐼𝑃 2𝑙⁄ 0 − 𝐼𝑃 2𝑙⁄ 0
0 𝑚𝑢 0 0
0 0 0 𝑚𝑢

] 𝐂 = [

𝑐𝑠 −𝑐𝑠 𝑐𝑠 −𝑐𝑠
𝑙𝑐𝑠 −𝑙𝑐𝑠 −𝑙𝑐𝑠 𝑙𝑐𝑠
−𝑐𝑠 𝑐𝑠 + 𝑐𝑢 0 0
0 0 −𝑐𝑠 𝑐𝑠 + 𝑐𝑢

] 𝐊 = [

𝑘𝑠 −𝑘𝑠 𝑘𝑠 −𝑘𝑠
𝑙𝑘𝑠 −𝑙𝑘𝑠 −𝑙𝑘𝑠 𝑙𝑘𝑠
−𝑘𝑠 𝑘𝑠 + 𝑘𝑢 0 0
0 0 −𝑘𝑠 𝑘𝑠 + 𝑘𝑢

] (3) 

where 𝑚𝑠, 𝐼𝑝, 𝑘𝑠, 𝑐𝑠, 𝑙, 𝑚𝑢, 𝑘𝑢 and 𝑐𝑢 are the sprung-mass, inertia, stiffness, damping, 

distance between the center of gravity and an axle, and the unsprung-mass, stiffness and 

damping, respectively.  

 Assuming one-dimensional simple beam as the bridge on the 𝑥-coordinate, the input 

displacement can be described as 

𝑢𝑖 = 𝑅(𝑥𝑖(𝑡)) + 𝑦B(𝑥𝑖(𝑡), 𝑡) (4) 

where 𝑅(𝑥) and 𝑦B(𝑥, 𝑡) are the road unevenness and the bridge displacement. The vehicle 

pathway is also on the 𝑥-coordinate, and 𝑥𝑖(𝑡) denotes the axle position. The bridge response 

can be decomposed into modal responses such as 

𝑦B(𝑥, 𝑡) = ∑𝜙𝑘(𝑥)𝑞𝑘(𝑡)

∞

𝑘=1

 (5) 

where 𝜙𝑘(𝑥)  and 𝑞𝑘(𝑡)  are 𝑘 -th mode shape and basis coordinate of the bridge. 

Considering only first and second mode, the bridge component vector observed by the 

travelling vehicle is given by 

G



 
 

Table 1   The standard parameters of vehicle 

Sprung- Mass 𝑚𝑠 18,000[kg] 

 Stiffness 𝑘𝑠 1.0 × 106[kg/s2] 

 Damping 𝑐𝑠 1.0 × 104[kg/s] 

 Inertia 𝐼𝑃 64958[kg m2] 

 Distance 𝑙 1.875[m] 

Unsprung- Mass 𝑚𝑢 1,100[kg] 

 Stiffness 𝑘𝑢 3.5 × 106[kg/s2] 

 Damping 𝑐𝑢 3.0 × 104[kg/s] 

Run speed  𝑣 10.0[m/s] 
 

Table 2   The bridge parameters 

Span 

Length 
𝐿 30.0[m] 

Flexural 

Stiffness 
𝐸𝐼 1.56 × 1010[Nm] 

Mass per 

unit length 
𝜌𝐴 3,000[kg/m] 

Reyleigh 

coefficients 

𝛼 0.238 

𝛽 0.000  
 

 

𝒚𝐁(𝑡) = 𝚽(𝑡)𝒒(𝑡) = [
𝜙1(𝑥1(𝑡)) 𝜙2(𝑥1(𝑡))

𝜙1(𝑥2(𝑡)) 𝜙2(𝑥2(𝑡))
] {
𝑞1(𝑡)

𝑞2(𝑡)
}. (6) 

The unsprung-response vector 𝒛̈𝑢(𝑡) is  

𝒛̈𝑢(𝑡) = {
𝑧𝑢1(𝑡)

𝑧𝑢2(𝑡)
}

̈
= 𝚽(𝑡)(𝑐𝑢𝒒̇(𝑡) + 𝑘𝑢𝒒(𝑡)) + 𝝐(𝑡) (7) 

where 𝝐(𝑡) is the error term including the sprung-mass response component and the road 

profile component. Shape function matrix is given by  

𝐍(𝑡) = [
−
1

𝐿
(𝑥1(𝑡) −

2𝐿

3
)

1

𝐿
(𝑥1(𝑡) −

𝐿

3
)

−
1

𝐿
(𝑥2(𝑡) −

2𝐿

3
)

1

𝐿
(𝑥2(𝑡) −

𝐿

3
)

]. (8) 

where 𝐿 is the span length of the bridge. Substitution of Eq. (8) into Eq. (7), we obtain 

𝒛𝒖̈(𝑡) = 𝐍(𝑡)𝐀(𝑐𝑢𝒒̇(𝑡) + 𝑘𝑢𝒒(𝑡)) + 𝝐(𝑡). (9) 

Assuming 𝐍−1(𝑡)𝝐(𝑡) = 𝐀𝝐̃(𝑡) and 𝝈(𝑡) = 𝑐𝑢𝒒̇(𝑡) + 𝑘𝑢𝒒(𝑡) + 𝝐̃(𝑡), Eq. (9) becomes 

𝐍−1(𝑡)𝒛̈𝑢(𝑡) = 𝐀𝝈(𝑡). (10) 

𝐍−1(𝑡)𝒛̈𝑢(𝑡)  is the corrected vehicle response vector. Applying SVD (Singular Value 

Decomposition) to 𝐍−1(𝑡)𝒛̈𝑢(𝑡), 𝐀 can be estimated as the spatial singular mode. 

 

NUMERICAL SIMULATION 

 

To examine the efficiency of spatial singular mode, the numerical simulation of VBI system is 

carried out. The parameters of the vehicle is shown in Table 1. The bridge is modeled by one-

dimensional finite beam elements. The parameters of the bridge are also shown in Table 2. 

The first undamped natural frequency is 3.96[Hz]. The measurements are the acceleration  



 
 

 
(a) Road profile: Extra Good 

 
(b) Road profile: Good 

Fig. 4 The results of estimation for spatial singular mode (Damage Location: 3[m]=L/10) 
  

responses of the unsprung-mass with 1% normal white noise. The bridge damage is introduced 

by decreasing 𝐸𝐼 locally. 

 

RESULT AND DISCUSSION 

 

Two mode shapes at two locations can be obtained from two accelerometers, shown in Fig 3. 

The mode shape in this study is normalized to satisfy 𝐴1𝑘
2 + 𝐴2𝑘

2 = 1. Fig. 4 shows 𝐴11 and 

𝐴21 relationships in different road profiles for each bridge state. The damage location is L/10 

and the width is 1[m]. The mode is calculated 10 times for each case by Monte Carlo 

Simulation. The plot group for each bridge state are distinctively different. It means that the 

variety of the spatial singular mode is larger than the errors of measurements.  

 

CONCLUSION 

 

This study proposes applying spatial singular mode to bridge damage detection and examines 

the efficiency of the proposed method. According to the results, estimated spatial singular mode 

changes due to local damage larger than measurement errors. Thus, it is shown that high 

probability of the proposed method for bridge damage detection. 
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