The Application of the SVD-FDD Hybrid Method to Bridge Mode Shape Estimation

Sakai Masaki

Graduate Student (M1) Department of Engineering Mechanics and Energy, Graduate School of Systems and Information Engineering,

University of Tsukuba

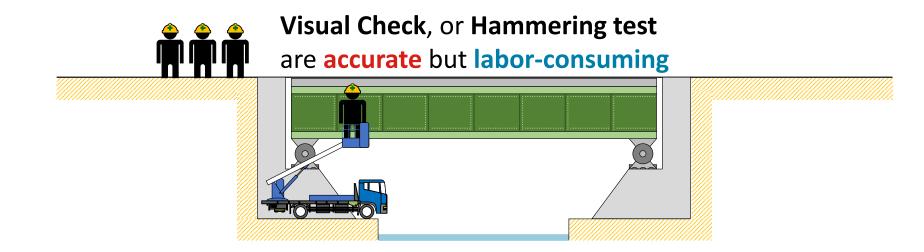
Yamamoto Kyosuke

Assistant Professor Research Group of Engineering Mechanics and Energy, Faculty of Engineering, Information and Systems **University of Tsukuba** Our Theme

Easy and **Reliable Bridge Inspections** (Objective: ex) vibration-based SHM)

(Low-cost & Labor-saving) Anyone can do it

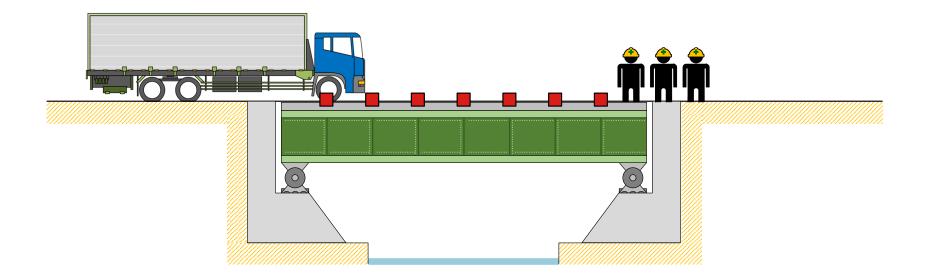
Same result no matter who does it



Vibration-based SHM for Short-span Bridges

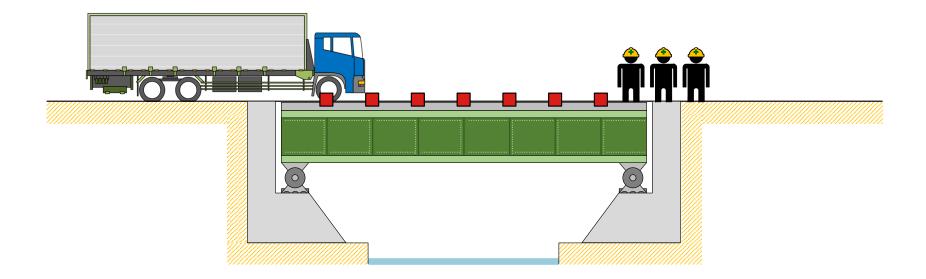
Sensors are installed on the bridges

More than **700,000** in Japan



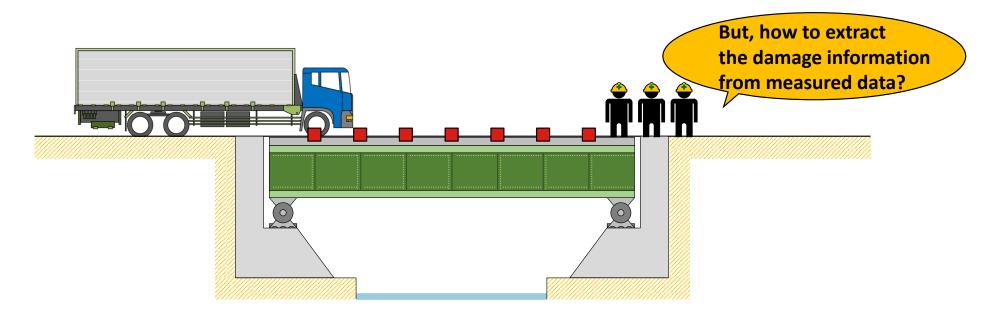
Traffic-induced Vibration is predominant

Predominant Frequencies and Mode Shapes do not match the Natural ones



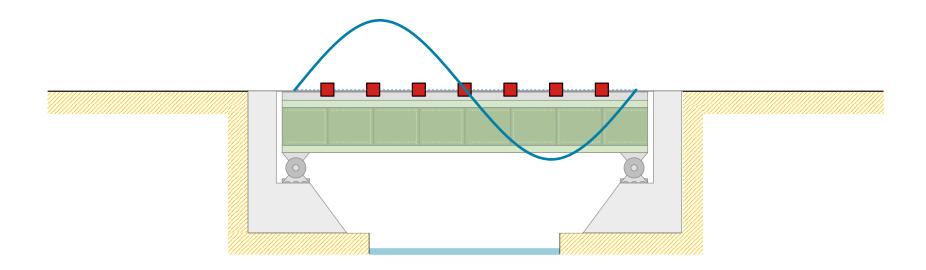
Damage Information may be easily found

Local damage usually affects the higher order modal parameters



Mode Shape is a good Damage Indicator

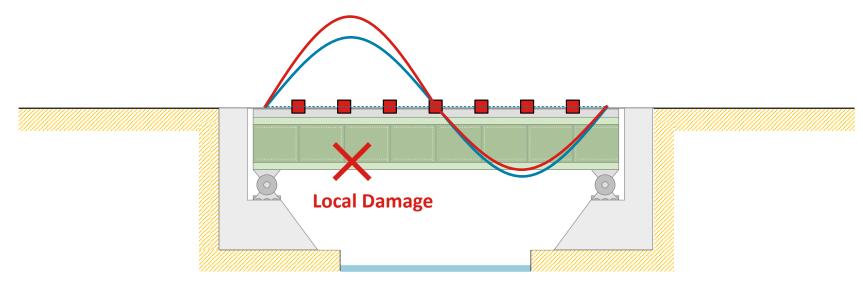
Defects locally reduce the flexural rigidity EI and mass ρA



Mode Shape is a good Damage Indicator

Defects locally reduce the flexural rigidity EI and mass ρA

and Mode Shape is **sensitive** to **local damages**



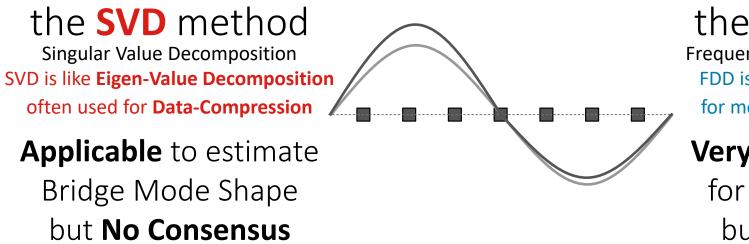
Mode Shape Matrix is Orthogonal

Equation of Motion
$$\mathbf{M}\ddot{\mathbf{y}} + \mathbf{K}\mathbf{y} = \mathbf{0}$$

 $-\omega_k^2 \mathbf{M}\alpha_k e^{j\omega_k t} + \mathbf{K}\alpha_k e^{j\omega_k t} = \mathbf{0}$ Mode Shape Natural Frequency
 $[\mathbf{M}^{-1}\mathbf{K}]\{\alpha_k\} = \omega_k^2\{\alpha_k\}$
Eigen-value
Decomposition $[\mathbf{M}^{-1}\mathbf{K}] = \mathbf{A}\Sigma\mathbf{A}^T$
 $\mathbf{A}^{-1} = \mathbf{A}^T$
 $\mathbf{A}^{-1} = \mathbf{A}^T$
Free vibration
 $\mathbf{y} = \alpha_k e^{j\omega_k t}$
Mode Shape Natural Frequency
 \mathbf{M}
 $\mathbf{A} = [\alpha_1 \dots \alpha_n]$
 $\mathbf{\Sigma} = \operatorname{diag}[\omega_1^2 \dots \omega_n^2]$
Natural Frequency

Operational Modal Analysis is needed

To estimate the **modal parameters** from **transient responses**



the **FDD** method

Frequency Domain Decomposition FDD is like Cross-Power method for mode shape and Frequency

Very Popular method for BMS estimation but complicated

SVD assumes that q(t) is **uncorrelated**

$y(t) = \mathbf{A}q(t)$

Diagonalization

$$E[\mathbf{y}(t)\mathbf{y}(t)^{\mathrm{T}}] = \mathbf{A}E[\mathbf{q}(t)\mathbf{q}(t)^{\mathrm{T}}]\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{D}\mathbf{A}^{\mathrm{T}}$$

Assuming that q(t) is uncorrelated, **D** becomes to be diagonal

FDD assumes that $q(\omega)$ is independent

If $\omega = \omega_k$, the shape of $\mathbf{y}(\omega)$ matches the k-th mode shape

Diagonalization

$$\boldsymbol{y}(\omega)\boldsymbol{y}^{\mathrm{H}}(\omega) = \boldsymbol{A}(\omega)\boldsymbol{q}(\omega)\boldsymbol{q}(\omega)^{\mathrm{H}}\boldsymbol{A}(\omega)^{\mathrm{H}} = \boldsymbol{A}(\omega)\boldsymbol{S}_{\mathrm{FF}}(\omega)\boldsymbol{A}(\omega)^{\mathrm{H}}$$

cross-power spectrum

If $q_k(\omega)$ is not zero, $q_l(\omega)$ $(l = 1 \sim n, \text{ except } k)$ are zero

 $S_{FF}(\omega)$ is called **Singular Spectrum**, of which peaks are estimated natural frequency The *k*-th order estimated mode shape $A(\omega_k)$ can be found by detecting *k*-th peak ω_k

SVD and **FDD** uses different assumptions

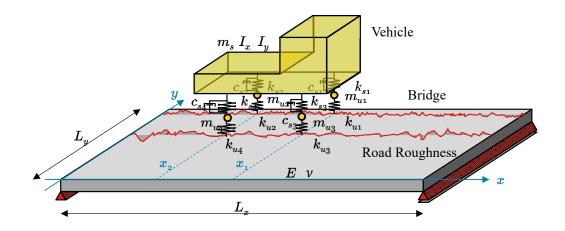
If the bridge is in the state of **free vibration** or **excited by white noise loads**, the results from SVD and FDD will be the **same**

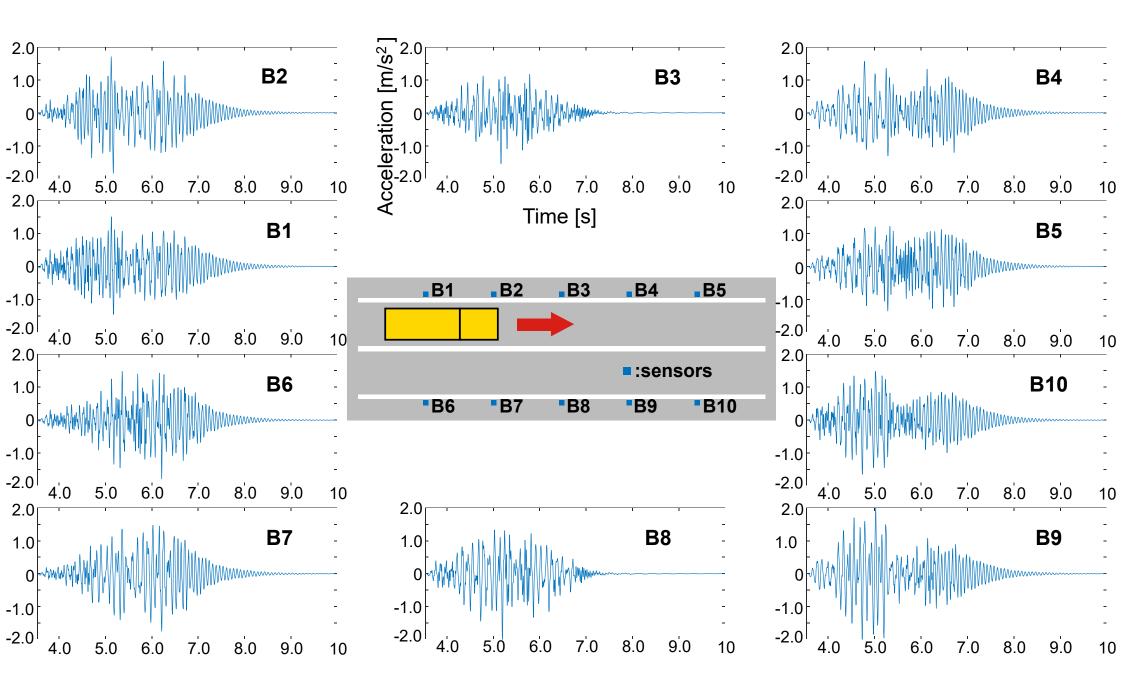
Traffic-induced vibration does not satisfy this condition

the **Size of Difference** can be used to evaluate damage? (Hybrid Method)

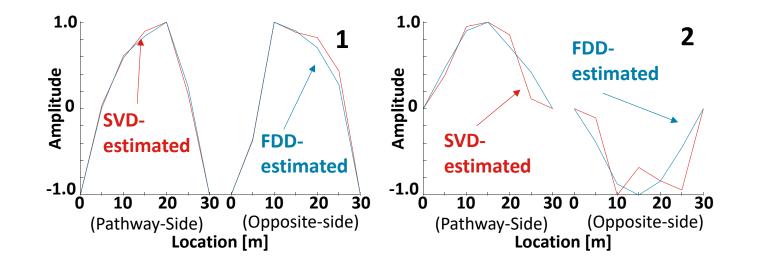
To **Compare the Mode Shapes** estimated by **SVD** and **FDD Similarity** is evaluated by **MAC**

Bridge Vibration Data is simulated by numerical simulation

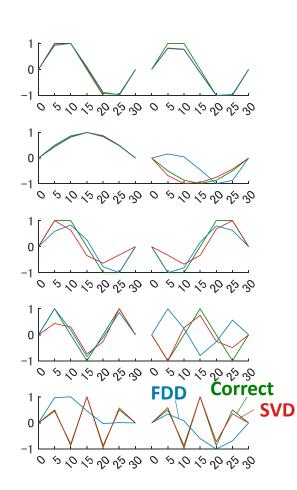


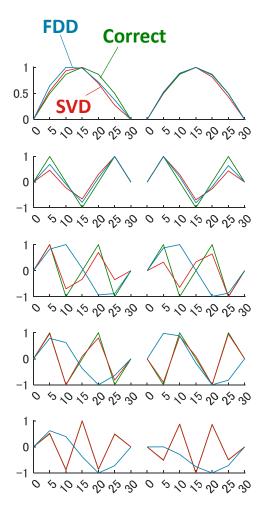


The **SVD** and **FDD**'s estimates are similar in Low Order



Estimated Bridge Mode Shapes

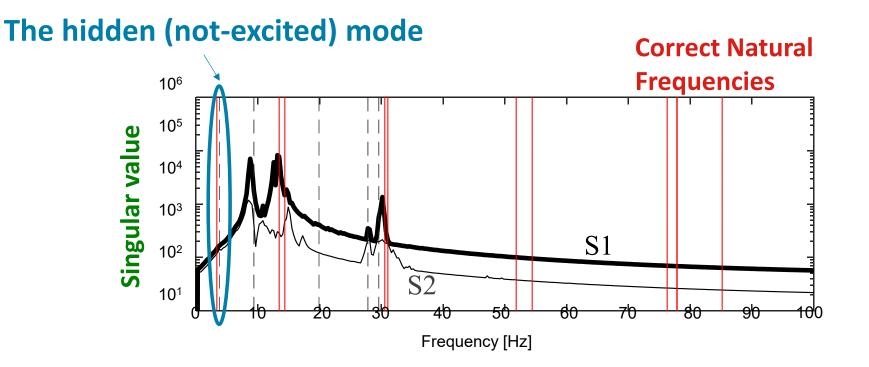




However, those in Higher Order are **much different**

Comparing them with **Correct values the accuracy of SVD** is better

Singular Spectrum from **FDD**



SS of FDD cannot also find the natural frequencies that **SVD** can estimate

Traffic-induced Vibration is numerically simulated to compare the applicability of **SVD** and **FDD** to **Operational Modal Analysis**

SVD is not popular for Operational Modal Analysis but shows good accuracy to estimate **Bridge Mode Shapes** from **Traffic-induced Vibrations**

FDD is a popular method for Operational Modal Analysis but it cannot estimate **the hidden (not-excited) modes**

SVD can estimate the hidden modes from the orthogonality of Mode Matrix