The behavior analysis of **Spatial Singular Mode Angle**

due to addition of noise to the data in **an actual bridge experiment**

the 10th EWSHM in Parelmo 2022, July 4.

Yuta Takahashi

Yachiyo engineering, Japan.

Naoki Kaneko, Ryota Shin, Kyosuke Yamamoto(Presenter)

University of Tsukuba, Japan.

Our Theme

Practical and Robust Drive-by Monitoring

- Cyber Physics System (CPS) realizes the data-driven management.
 - The construction needs BIG data for infrastructure, bridge, road surface etc...
 - This study focuses on the bridge.
- The measurement should be practical.
 - The COST is required as being low (about energy supply, data communication, the sensor installation)
 - Drive-by monitoring can reduce the cost of the sensor installation.

Data driven SHM for bridge

- The measurement by **sensors on bridge** may be labor-consuming.
- The sensors on vehicle can collect a lot of data from many bridges only by running.
 - Their popular damage indices are natural frequency (NF) and mode shape (MS).
 - NF are often affected by noise, and it is necessary to use expensive sensor for detection of damage.
 - MS is more sensitive, however, it requires precise allocation.

Application of Drive-by Monitoring

- Collect big data by vehicles with vibration sensors and GPS
- Extract bridge vibration components from the vehicle vibration data
- Evaluate the bridge condition based on the estimated bridge vibration
- Inspect only "damage-suspected" bridges

Drive-by Technology for Screening: SSMA

• Spatial Singular Mode Angle is Estimated Bridge Mode Shape

(Conversion from the travelling points to the point fixed on bridge)

$$SSMA = \tan^{-1}\left(\frac{A_{21}}{A_{11}}\right) = \tan^{-1}\left(-\frac{A_{12}}{A_{22}}\right)$$

5

Previous Study

• SSMA is relatively **robust** and **sensitive**.

(not affected by noise) (changes well for structural changes)

Tendency of SSMA and Bridge Span

• SSMA tends to depend on bridge length

* Y.Takahashi et al, EVACES2021

The **Purpose** of this Study

- To try to decrease the variance of SSMA by two schemes
 - 1. Noise Adding
 - 2. Smoothing

Method: Noise and Smoothing

Noise Adding

- Original signals are amplified by Noise (ratio: ±5~10%)
- Notice that the additional noise is white noise.
- Smoothing
 - The smoothed signal are produced by Gaussian Filter from the original. (Low-Pass Filter)
 - Window size is changed to 4 (~75Hz), 20 (~15Hz), and 40 (~7.5Hz).

Experiment

• The field experiment is carried out for 4 bridges

Bridge (name)	Туре	Span [m]	Run [times]
PC1(TAKAMRU)	PC	12.6	26
PC2(SHIRAHATA)	PC	14	26
PC3(MATSUMI)	PC	30.88	25
S1(ASAHI)	Steel	30	24

PC1

S1

Experiment Movie : PC3

Example of Measured Data

Result

- Noise Adding: a little difference of SSMA from original.
 - 10% random noise is high on previous studies**.
 - Only S1 tends to be converged in spite of increasing noise ratio.
- Smoothing: the variance decreases better in longer PC bridge.
 - Bridge length: PC1<PC2<(S1)<PC3.
 - Over 20 window size, the variance decrease is not clear, comparing with window size 4 on PC3.
 - Smoothing increases the variance of S1.

** For example, Eugene J Obrien, 2017.

Discussion

	Noise-Adding		Window Size				
Bridge	10%	5%	0	4	20	40	
PC1	0.231	0.214	0.200	0.194	0.197	0.180	
PC2	1.764	1.752	1.739	1.648	1.562	1.273	
PC3	1.627	1.467	1.321	0.485	0.362	0.437	
S1	2.043	2.058	2.076	2.100	2.217	2.249	

Variance change of SSMA

- In PC Bridges, Smoothing can decrease the SSMA variance:
 - PC bridge is more "rigid",
- In a Steel Bridge, Noise-Adding can decrease the SSMA variance:
 - Noise can disturb the influence from unknown factors, while smoothing deletes the structural information

Conclusion & Future Works

Conclusion

- Noise-Adding and Smoothing can decrease the SSMA variances
 - On PC bridges, Smoothing can work well, while Noise-Adding doesn't.
 - On the steel bridge, Noise-Adding can work well, while Smoothing doesn't.
- The difference of **bridge type** should be considered for variance-reduction.

Future Works

- Field Exp. on 121 bridges has been done:
- We will analyze SSMA distributions from Length, Type and Damage.

Acknowledge & Reference

Acknowledge:

This study use sensors developed by Mr. Ono who is engineer stuff in university of Tsukuba.

We appreciate his great works.

IN SLIDES:

* Yuta Takahashi et al, The validation of sensor on-vehicle for evaluation of actual bridges with signal processing,9th International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES2021)

**Eugene J Obrien et al, Application of empirical mode decomposition to drive-by bridge damage detection, European Journal of Mechanics-A/Solids, 2017.

- Y B Yang et al, Extracting bridge frequencies from the dynamic response of a passing vehicle, Journal of Sound and Vibration, 2004.
- T. Nagayama et al, Bridge natural frequency estimation by extracting the common vibration component from the responses of two vehicles. Engineering Structures, 2017.
- K. Yamamoto and M. Ishikawa, Numerical Verification of Bridge Screening Technology based on Vehicle Vibration. Lecture Notes in Engineering and Computer Science: Proceedings of The World Con-gress on Engineering 2016, 2016.