粒状体力学は土質力学の教科書を 書き換えられるか

筑波大学 松島亘志

2018/07/25 第53回地盤工学研究発表会

ところが,他分野の研究者からも...

「**土質力学**」は どこが難しいのか?

(1) 対象材料は土質材料: 多様

(2) **地盤工学**のための力学 様々な視点が混在

典型的な「土質力学」のコンテンツ

- 1章 土の基本的性質と分類 2章 诱水 土の応力(有効応力の原 3章 圧密 4章 5章 土のせん断 6章 十斤 7章 支持力 8章 斜面安定
 - +不飽和土の力学, 締固め, 動的性質, ほか

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

・土質材料学的側面(土粒子 より小さいスケールの話: 鉱物組成や年代効果など)は 分けて説明すべき

SOIL BEHAVIOR

SOIL MECHANICS IN ENGINEERING PRACTICE

・いきなり2相系,3相系の話に入るのはどうか (圧密の説明のために有効 応力と透水が必要だからこうなっている.)

・6,7,8章は境界値問題 (5章との間にギャップ)

「土質力学」の構成

「土質力学」の構成

「土質力学」の構成

「土質力学」と「地盤工学」の棲み分けの提案

本日の話の主要部

「粒状体ベースの土質力学」コンテンツ案

土の力学の特徴 (1)土の分類 (2)堆積構造 (3)(4)弾件 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)有効応力 (8)透水・圧密 (9)・浸透破壊 (10) 不飽和状態

- ・他の材料との違い
- ・**粒状体力学**による土の分類 (単なる定義ではない)
- ・粘土の塑性圧縮は2相系で
 説明しなくても良い
- ・土の**体積変化**は, **堆積構造** から統一的に説明
- ・マクロな<mark>強度定数</mark>(c, φ)と ミクロな物性の関係
 - ・間隙水の影響は後半で
 多くは2・3相系の問題
 として連続体力学へ

(1) 土の力学の特徴

「土は, 独立した固体粒子の集合体である」

(a) 土の変形は, 土粒子の変形(弾性)+粒子の相対運動(塑性) (b) 粒子間付着力の他,接触点では摩擦力が作用 (原子・分子系とは異なる) (c) →様々な間隙構造で安定 (d) →変形時に顕著な塑性体積変化が生じる (塑性圧縮,ダイレタンシー)

(e) 粒子間接触面積は十分小さい
 (f) 間隙は全てつながっている

 →間隙流体は粒子間を流れる(透水・圧密)
 (g) (e),(f)→有効応力の原理

粒子物性のうち,現在の工学的分類では 粒度 と 粒子間付着力 を基に分類している

(2) 粒径による土の分類

日本統一土質分類

• •		<i>i</i> 1	<u> </u>	
巨石 比	ooulder	(mm)	のた	
粗石。	cobble	500		
磁	粗礫 coarse gravel	75		
gravel	中心 medium gravel	19	粗粒	
		4.75	T /4/	
Tele	袖喉 fine gravei	2	礫	
砂 sand	粗砂 coarse sand	0.85	砂	
	中砂 medium sand	0.25	シリ	
	細砂 fine sand	0.25	米占十	
シルト	silt	0.075	· 1 F-1 1	
			もう	
		0.005		
粘土。	clay	0.005		

そもそも, なぜ, このように分ける のか??

粗粒土と細粒土 粒が見えるか否か

※ ゴツゴツ り サラサラ /ルト シットリ 5土 ベトベト

もうちょっと力学的な説明 **粒子間付着力** 透水性 侵食〜堆積特性

(2) 粒径による土の分類:粒子間付着力

(2) 粒径による土の分類:透水性

ハーゲン・ポアズイユの式を用いて1mの水位差を保った状態 の土中の水の流速を概算してみよう。

	表 2・1 土の種類と透水係数 透水係数 k〔cm/s〕 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ⁺¹ 10 ⁺²							
1	透水性	実質上不透水	非常に低い	低い	中位	i	高い	
Im	土の種類	粘性土	微細砂, 砂-シルト-	シルト 粘土混合土	砂および	樂	礫	—
	変水位透水試験← → 定水位透水試験 安田・山田・片田「土質力学」オーム社より							

d=2mm(礫)なら d=0.2mm(砂)なら d=0.02mm(シルト)なら d=2μm(粘土)なら v≒1.2(m/s) 1.2(cm/s) 0.12(mm/s) 1.2(µm/s) ほとんど影響なし 地震などの短期現象

長期でも影響あり

(2) 粒径による土の分類

ユルストロム図

坂ほか「地球・環境・資源」共立出版より

Stokes抵抗,付着(凝集)力,境界層厚などが関係

(2) 粒子間付着力による土の分類

コンシステンシー限界:wp,wL 粘土粒子の粒径(表面積)で,ある程度は評価できるが...

粘土の種類によっても大きく異なる →これに深入りするのは本質でない →結局「<mark>粒子間付着力</mark>」自体をパラメータとすれば良い

(2) 粒子間付着力による土の分類

土質力学における粒子間付着力の種類

- ・**コロイド凝集力(vdW力**+拡散二重層反力) 可逆的
- ・不飽和土のサクション ヒステリシス 不可逆的
- 不攪乱試料のセメンテーション

それぞれで異なるモデリングが必要. しかし, 付着力ベースで考えれば, その後の集合体の力学の見通しが良くなる.

(2) 粒径による土の分類:まとめ

土の力学の特徴 (1)土の分類 (2)堆積構造 (3)(4)弾性 塑件圧縮 (5)せん断 (6)(7)間隙水の条件 (8)有効応力 (9)透水・圧密 ・浸透破壊 (10) 不飽和状態

土の工学的分類は, 粒子の 力学的作用によって行われ るべき.現在は **粒径 粒子間付着力** を重要因子として分類して いる.

(3) 堆積構造

通常の土質力学では,間隙比が指標

(3) 堆積構造:規則配列(金属結晶学より)

(3) 堆積構造:規則配列とランダム配列

実際の土の堆積構造はランダム配列

結晶の規則配列研究(Bravais, 1949) Bernal packing (Bernal, Nature, 1959) 単純液体とアモルファス固体の研究 ランダム close/loose パッキングの研究 最上 小田 佐武 Torquato & Stillinger, 2010

Aste T., Weaire D. The pursuit of perfect packing, Taylor & Francis, 2008.

実は<mark>規則配列モデル</mark>も,いろいろ役立つ(後述)

(3) 堆積構造

(3) 堆積構造 : 粒度分布の影響

十分大きさの異なる2種類の粒子を混ぜたときの間隙比

McGeary et al. 1962. Lade et al. 1998

(3) 堆積構造

Suzuki & Matsushima, 2014.

摩擦小, 付着力小

:粒子間付着力の影響

Case 2

 Case 3
 Case 4

 摩擦中,付着力大
 摩擦大,付着力大

(3) 堆積構造:まとめ

土の力学の特徴 (1)土の分類 (2)堆積構造 (3)(4)弾性 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)(8)有効応力 (9)透水・圧密 ·浸透破壊 (10) 不飽和状態

取り得る間隙比の幅は, 粒度分布 粒子形状 摩擦力 付着力 などの影響を受ける.

これらの影響は ある程度定量的に 説明できる

(4) 土の弾性

粒状体構造

梁構造

堆積構造が変化しないような微小変形では 対応する**梁構造の弾性**として計算できる

(4) 土の弾性

換算梁の物性は 粒子自体の弾性係数とHertzモデルで記述できる

Hertzモデル(2つの弾性球の接触): 圧力が大きいほど接触面積が大きくな り,剛性が増加する(ブーシネスクの 応力解の応用)

$$\dot{P} = \left(\frac{\sqrt{3RG}}{1-\nu}\right)^{2/3} P^{1/3} \dot{\delta} \equiv k_n \dot{\delta}$$

拘束圧の1/3乗
粒子の弾性係数

 \mathbf{O}

Dm

(4) 土の弾性: 拘束圧依存性

土のせん断剛性の拘束圧依存性を(ある程度)表現できる

(4) 土の弾性:間隙比依存性

土の弾塑性構成モデル(地盤工学・基礎理論シリーズ3),2009.

(4) 弾性:まとめ

土の力学の特徴 (1)土の分類 (2)(3)堆積構造 (4)弾性 (5)塑件圧縮 せん断 (6)間隙水の条件 (7)(8)有効応力 (9)透水・圧密 ·浸透破壊 (10) 不飽和状態

土の弾性係数は, 堆積構造 の換算梁モデルで評価できる →**配位数**が重要

- ・粒度分布の影響
- ・粒子形状の影響
- ・粘土の弾性係数

などは,やや面倒だが 本質的な考え方は同じ

土の力学の特徴 (1)土の分類 (2)堆積構造 (3)(4)弾性 (5) 塑性圧縮 せん断 (6)間隙水の条件 (7)(8)有効応力 (9)透水・圧密 ・浸透破壊 (10) 不飽和状態

なぜe-log(p)なのか? 圧縮指数の値はどの程度か ?

(4) 塑性圧縮:粗粒土の場合→粒子破砕

漸化的間隙充填モデル

- ・破砕した粒子は,隙間を充填する
- ・その時の局所間隙比は,破砕前の 間隙比と同じ
- ・小粒子に囲まれた大粒子は,等方
 的応力がかかるため,破砕しない
 →小さい粒子が同様に破砕する

破砕応力の粒径依存性

- ・小さい粒子ほど欠陥が少ない
 →破砕しにくい
- ・ワイブル分布で記述される

これを数式で書くと, log(n)-log(p)が直線となる

(4) 塑性圧縮:粗粒土の場合→粒子破砕

1次元圧縮試験の結果

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

佐藤ほか, 土論, 2017.

(4) 塑性圧縮:細粒土の場合→構造の破壊

Suzuki & Matsushima, 2014.

Case 1 摩擦小 付着力小

初期間隙サイズ分布は, べき分布

(4) 塑性圧縮:細粒土の場合→log(n)-log(p)

Suzuki & Matsushima, 2014.

- ・間隙のべき分布
- ・大きい間隙ほど崩壊しやすい
- →粒子破砕モデルと同じモデル化が可能では? (今後の研究)

(4) 塑性圧縮:まとめ

土の力学の特徴 (1)土の分類 (2)(3)堆積構造 (4)弾性 (5)塑性圧縮 せん断 (6)間隙水の条件 (7)有効応力 (8)(9)透水・圧密 ・浸透破壊 (10) 不飽和状態

log(n)-log(p)の勾配には 物理的意味がありそう. 支配的なメカニズムは

- ●粗粒土の場合,
 - ・粒子破砕応力の粒径依存性
- ・粒径ごとの間隙比
- ●細粒土の場合は
- ・間隙崩壊応力の 間隙サイズ依存性
- ・粒子間付着力と摩擦力 で決まる間隙分布

(6) せん断強度

土の力学の特徴 (1)(2)土の分類 (3)堆積構造 (4)弾性 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)(8)有効応力 透水・圧密 (9)・浸透破壊 (10) 不飽和状態

- ・Mohr-Coulomb か Cam-clay か?
- ・内部摩擦角φや粘着力cの 値の範囲は?

$$\tau = c + \sigma_n \tan \phi$$

(6) せん断:規則配列モデル

Newland, P.L. and Allely, B.H., Geotechnique, 7, 1 17-34, 1957. Rowe, P.W., Proc. Roy. soci. London, A 269, 500-527, 1962.

(6) せん断:規則配列モデル(粒子形状の影響)

(6) せん断:規則配列モデル(付着力の影響)

表面間距離の増大 →付着力に対して仕事

粘土のクラスターが 変形可能な粒子のように 振る舞う

(6) せん断:不規則配列への拡張

[1] 接触点応答の平均場モデル 接触点の力学応答モデル +接触点方向の変化モデル +接触点の生滅モデル

Digby, 1981. Christoffersen et al., 1981. Walton, 1987. Bathurst & Rothenburg, 1988. Chang & Misra, 1990.

※均質ひずみ場または均質応力場モデルの限界 ※塑性圧縮の直接表現ができない

[2] **ユニット構造の平均場モデル** それぞれの構造の力学応答モデル +存在確率の変化モデル (研究中)

(6) せん断強度:まとめ

土の力学の特徴 (1)土の分類 (2)(3)堆積構造 (4)弾性 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)有効応力 (8)(9)透水・圧密 ・浸透破壊 (10) 不飽和状態

単純な規則配列モデルでも c, φと粒子パラメータの関 係がある程度説明できる.

塑性圧縮との連動(Camclay model)については, 不規則配列モデルが必須

繰り返し載荷について :構造の自己組織化 (統計力学と関係)

(7) 間隙水の条件

土の力学の特徴 (1)(2)土の分類 堆積構造 (3)(4)弾性 塑件圧縮 (5)せん断 (6)間隙水の条件 (7) (8)有効応力 透水・圧密 (9)・浸透破壊 (10) 不飽和状態

粒状体の堆積構造: 間隙は全て繋がっている

→飽和した間隙流体は自由に 移動できる.

→深さ方向の静水圧分布は, 粒子があってもなくても同じ

透水係数に対して,**十分ゆっ** くり変形させれば,影響なし

土の力学の特徴 (1)(2)土の分類 (3)堆積構造 (4)弾性 塑件圧縮 (5)(6)せん断 間隙水の条件 (7)(8)有効応力 (9)透水・圧密 ・浸透破壊 (10) 不飽和状態

(9) 透水と浸透破壊

土の力学の特徴 (1)土の分類 (2)(3)堆積構造 (4)弾件 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)(8)有効応力 透水・圧密 (9) ・浸透破壊 (10) 不飽和状態

透水問題は連続体的な扱い で良い?

透水係数は,間隙構造と動 水勾配方向に依存 (基本は「ハーゲン・ポアズ イユ流れ」でOK)

透水力による土粒子の運動 (パイピングや洗掘)では, 連続体力学のみでは不十分 なこともある.

(10) 不飽和状態

(1)(2)(3)(4)(5)(6)(7)(8)(9)

土の力学の特徴 土の分類 堆積構造 弾性 塑性圧縮 せん断 間隙水の条件 有効応力 透水・圧密 ・浸透破壊 (10) 不飽和状態

液架橋付着力の定式化: Young-Laplace方程式

DryingとWettingで 間隙水の分布状況変化の過程が 異なる →水分特性曲線のヒステリシス

どこにどれだけの水があるか →統計力学的な取り扱いが必要

(10) 不飽和状態

土の力学の特徴 (1)土の分類 (2)堆積構造 (3)(4)弾件 塑件圧縮 (5)せん断 (6)間隙水の条件 (7)有効応力 (8)透水・圧密 (9)・浸透破壊 (10) 不飽和状態

液架橋付着力の定式化: Young-Laplace方程式

DryingとWettingで 間隙水の分布状況変化の過程が 異なる →水分特性曲線のヒステリシス

どこにどれだけの水があるか →統計力学的な取り扱いが必要

地盤工学の実務への橋渡し

実務のための土質力学

- ・なぜ含水比や間隙比の分母は全体量でないのか?
- ・なぜ塑性限界・液性限界試験はあんなに原始的なのか?
 - ・なぜ締固めは含水比で整理するのか?
 - ・均等係数,曲率係数の定義の背景は? Uc=D60/D10,Uc'=(D30)^2/(D60*D10)

現在の「土質力学」は,多くの「なぜ」に答えてい ない.

土質材料学

- ・岩石鉱物の起源
- ・土の成因(岩石の風化)

使える

・粘土粒子とその相互作用 ・地層の形成

地盤工学への直接的な展開

地盤工学の今後の展望:学際的研究・協働

- (1) 河川・海岸工学水と土砂の流動問題
- (2) 地球科学: 地盤の形成プロセスの力学 (初期状態という概念を取り払う)
 地形と地質の関係→地盤物性の予測 (調査しなくてもわかる)
 長期問題への展開:化学反応の考慮
- (3) 粉体工学(石炭,鉄鉱石などは地盤材料) 粒状体固体と粒状体流体の統一理論

(4) 農学・生物学:**土壌**の科学,生命環境学

(5) 統計物理学:より広い物理分野への足がかり

地盤は人間の生活基盤

→あらゆる分野に関係

→その力学解析の基礎となる「土質力学」は もっと体系化されて,利用されるべき.

長時間おつきあいいただき, ありがとうございました