Calculation Procedures for Shear Stress vs Shear Strain

NOTATIONS (Unit system : N / mm² = MPa = 0.0981 kgf / cm², concerning only for calculating f_{cr} from f_c)

	t	: panel thickness	カウントライン
	$ au_{xy}$: shear stress	
	f_y	: y-direction stress (=0)	XXX
	f_x	: x-direction stress (=0)	$\mathbf{K}\mathbf{X}\mathbf{X}$
	γ_{xy}	: shear strain	
	S _m	: average crack interval (45 degree direction)	
		$=(150+250+150+250)\sqrt{2}$	
		/ number of cracks on count lines	
	\mathcal{E}_1	: tensile principal strain	
	\mathcal{E}_2	: compressive principal strain	le Le
	\mathcal{E}_{x}	: x-direction strain	
	$\boldsymbol{\mathcal{E}}_{y}$: y-direction strain	
	θ	: angle between x-direction and compressive	A I fri
<i-th reinforcemen<="" td=""><td>$i \to (i-1)$ to</td><td>principal strain (clockwise as positive) n $n = < 10$ is available)</td><td>ri-</td></i-th>	$i \to (i-1)$ to	principal strain (clockwise as positive) n $n = < 10$ is available)	ri-
	E_{ii}	: elastic modulus	xy fc1
	f_{rui}	: tensile strength or yield strength	\leftarrow
	f_{ri}	: average stress	,
	${\cal E}_{ri}$: average strain	
	A_{ri}	: sectional area	
	S _i	: interval (pitch)	
	$ ho_i$: sectional area ratio = $\frac{A_{ri}}{s_i \cdot t}$	
	$ heta_{\scriptscriptstyle ri}$: angle between x-direction and i-th reinforcement	
		(clockwise as positive $0^{\circ} \le \theta_{ri} < 180^{\circ}$)	
	$ heta_i$: angle between tensile principal strain and i-th reinforce	ement
		(clockwise as positive = $(\theta + 90^\circ) - \theta_{ri}$)	
	$ ho_{_{ix}}$: effective ratio for x-direction = $\rho_i \cos \theta_{i} $	
	$ ho_{_{iy}}$: effective ratio for y-direction = $\rho_i \sin \theta_{ri}$	
	P_{rcri}	: tensile force at crack	
	P_{rmi}	: average force of reinforcement	
	f_{rcri}	: tensile stress at crack	
<concrete></concrete>			
	${f}_{c}$: compressive strength (negative value)	
	\mathcal{E}_c	: strain at compressive strength (negative value)	
	f_{cr}	: crack strength	

 \mathcal{E}_{cr} : strain at crack strength

E_{c}	: elastic modulus (calculating as $2 \cdot f_c / \varepsilon_c$)
f_{c1}	: average tensile stress
f_{c2}	: average compressive stress
$f_{c2\max}$: compressive strength of cracked concrete (negative value)
n_i	: elastic modulus ratio of reinforcement to concrete $= E_{ii}$ /

<others>

: yield bond stress τ_{bv}

 s_{by} : slippage at yield bond stress

Step 1

Give ε_1 for calculating this procedure.

Step 2 Give θ in arbitrary.

Step 3 Give Σf_{riv} in arbitrary.

Step 4

Calculate f_{c1} (Modified Compression-Field Theory by Collins et al.).

$$\begin{cases} f_{c1} = \frac{2 \cdot f_c \cdot \varepsilon_1}{\varepsilon_c} \quad (\varepsilon_1 \le \varepsilon_{cr}) \\ f_{c1} = \frac{f_{cr}}{1 + \sqrt{200 \cdot \varepsilon_1}} \quad (\varepsilon_1 \ge \varepsilon_{cr}) \\ f_{cr} = 0.33\sqrt{-f_c} \quad \varepsilon_{cr} = \frac{f_{cr} \cdot \varepsilon_c}{2 \cdot f_c} \end{cases}$$

Step 5

Calculate au_{xy} .

$$\tau_{xy} = \frac{f_{c1} + \Sigma \rho_{iy} \cdot \Sigma f_{riy}}{\tan \theta}$$

Step 6

Calculate f_{c2} .

$$f_{c2} = f_{c1} - \tau_{xy} (\tan \theta + 1 / \tan \theta)$$

Step 7

Calculate $f_{c2 \text{ max}}$ from ε_1 (Kanakubo et al., 2000).

$$\frac{f_{c2\max}}{f_c} = -\frac{1}{0.95 \cdot \varepsilon_1 / \varepsilon_c} \le 1.0$$

Step 8

Judge for concrete failure.

If $f_{c2} > f_{c2\max}$, finish the procedure.

Step 9

Calculate ε_2 (Modified Compression-Field Theory by Collins et al.).

Mohr's stress circle

 $/E_c$

$$\varepsilon_{2} = \varepsilon_{c} \cdot \left(1 - \sqrt{1 - \frac{f_{c2}}{f_{c2 \max}}}\right) \qquad \qquad \because \frac{f_{c2}}{f_{c2 \max}} = 2\left(\frac{\varepsilon_{2}}{\varepsilon_{c}}\right) - \left(\frac{\varepsilon_{2}}{\varepsilon_{c}}\right)^{2}$$

Step 10 Calculate ε_y .

$$\varepsilon_{y} = \frac{\varepsilon_{1} + \varepsilon_{2} \cdot \tan^{2} \theta}{1 + \tan^{2} \theta}$$

From Step 11 to 14, for each reinforcement (i=1 to n) Step 11 Calculate θ_i .

$$\theta_i = (\theta + 90^\circ) - \theta_{ri}$$

Step 12

Calculate \mathcal{E}_{ri}

$$\varepsilon_{ri} = \frac{\varepsilon_1 + \varepsilon_2}{2} + \frac{\varepsilon_1 - \varepsilon_2}{2} \cdot \cos 2\theta_i$$

Step 13

Calculate f_{ri} .

$$f_{ri} = E_{ri} \cdot \varepsilon_{ri}$$
 If $f_{ri} > f_{rui}$ in case of yield, $f_{ri} = f_{rui}$

Step 14

Calculate
$$f_{riy}$$
 and f_{rix} .

$$\begin{cases}
f_{riy} = f_{ri} \cdot \sin \theta_{ri} \\
f_{rix} = f_{ri} \cdot |\cos \theta_{ri}|
\end{cases}$$

Step 15 Calculate Σf_{riy} and Σf_{rix} .

Step 16

Compare Σf_{riy} between Step 3 and Step 15. If these are not equal, give another Σf_{riy} and return Step3.

Step 17 Calculate \mathcal{E}_x .

$$\varepsilon_x = \varepsilon_1 + \varepsilon_2 - \varepsilon_y$$

Step 18 Calculate f_x .

$$f_{cx} = f_{c1} - \frac{\tau_{xy}}{\tan \theta}$$
$$f_{x} = f_{cx} + \Sigma \rho_{ix} \cdot \Sigma f_{rix}$$

Step 19

Check $f_x = 0$. If $f_x \neq 0$, then give another θ and return Step 2.

Mohr's strain circle

From Step 20 to 24, for each reinforcement (i=1 to n) Step 20 Calculate s_{mi} .

$$s_{mi} = s_m \frac{\sin\left(135^\circ - \theta\right)}{\left|\cos\theta_i\right|}$$

However, in case of $\theta_i = 90^\circ$, no calculating needs.

Step 21 Calculate P_{rcri} .

$$P_{rcri} = \frac{(1+n_i\rho_i) \cdot P_{rmi} \cdot s_{mi}}{n_i\rho_i \cdot s_{mi} + \frac{2}{k \cdot \tanh(k \cdot s_{mi}/2)}}$$
$$P_{rmi} = f_{ri} \cdot A_{ri} \qquad k = \sqrt{\frac{(1+n_i\rho_i) \cdot \tau_{by}}{E_{ri} \cdot A_{ri} \cdot s_{by}}}$$

Step 22

Calculate τ_{cri} .

$$\tau_{cri} = \frac{k \cdot P_{rcri} \cdot \sinh(k \cdot s_{mi} / 2)}{(1 + n_i \rho_i) \cosh(k \cdot s_{mi} / 2)}$$

Step 23

If $\tau_{cri} \leq \tau_y$, go to the next step. If $\tau_{cri} > \tau_y$, calculate P_{rcri} .

$$P_{rcri} = \frac{P_{rmi} \cdot s_{mi} + \tau_{y} \cdot {l_{yi}}^{2} + 2E_{ri} \cdot A_{ri} \cdot s_{y} / (1 + n_{i}\rho_{i})}{2l_{yi} + \frac{s_{mi} - 2l_{yi}}{1 + 1/n_{i}\rho_{i}}}$$
$$\frac{P_{rcri} - (1 + n_{i}\rho_{i})\tau_{y} \cdot l_{yi}}{E_{ri} \cdot A_{ri}} + \frac{k \cdot s_{y}}{\tanh(k \cdot s_{mi} / 2 - k \cdot l_{yi})} = 0$$

Step 24

Calculate f_{rcri} , judge the rupture of reinforcement.

$$f_{rcri} = \frac{P_{rcri}}{A_{ri}}$$
 If $f_{rcri} > f_{rui}$ in case of rupture, finish the procedure.

Step 25 Calculate γ_{xy} .

$$\gamma_{xy} = \frac{2\left(\varepsilon_x - \varepsilon_2\right)}{\tan\theta}$$

Finishing for one procedure. For next ε_1 , go to Step 1.