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1 INTRODUCTION

High Performance Fiber-Reinforced Cementitious 
Composites (HPFRCC), which show a strain harden-
ing branch and multiple cracking under uniaxial ten-
sile stress, have been focused by lots of researchers 
because of its unique mechanical performance. En-
gineered Cementitious Composites (ECC) exhibit a 
maximum tensile strain of several percent owing to 
the synergetic effect of high-performance fiber and 
specifically designed mortar matrix (Li, V. C. 1993). 
Unprecedented high-performance structural mem-
bers can be expected when ECC is applied to seis-
mic components (Kanda, T. 2006). 

It has been cleared that cementitious materials 
such as concrete show scale effect on their mechani-
cal properties due to size of aggregates, existence of 
air void, and so on. In addition, it is considered that 
the fiber in fiber-reinforced cementitious composite 
causes scale effect which is mainly influenced by fi-
ber orientation. For example, the small size of 
specimens such as plate type shows higher tensile 
strength and deformation capacity because of two-
dimensional fiber orientation (Kanakubo, T. 2006). 
If we use some test pieces to check the mechanical 
properties of ECC, it is necessary to have informa-
tion about the relationships between properties ob-
tained by test pieces and those in actual structures. 

This paper describes the test results of the pullout 
test to obtain the local bond behavior between ECC 
and steel reinforcing bar. There is a possibility that 

the size of cover thickness of ECC around reinforc-
ing bar affects the orientation of fiber as shown in 
Fig.1, so bridging performance of fiber at the split-
ting crack is influenced by specimen size. To evalu-
ate the size effect, similar specimens using several 
diameters of reinforcing bars with same ratio of 
cover thickness to bar diameter are tested. The test 
results are mainly discussed in bond strength by st-
ress of ECC. 

Reinforcing bar

Slit

Crack

Fiber

Fig.1 Fiber orientation according to size difference 

2 EMPLOYED MATERIALS 

Table.1 shows the characteristics of PVA (Polyvinyl 
Alcohol) fiber used in this study. The binders are or-
dinary Portland cement and fly ash. Fine aggregate 
is silica sand. The volume fraction of PVA fiber is 
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2.0%. Specimen is cast continuously to avoid the 
discontinuity of fiber. Table.2 shows the characteris-
tics of ECC used in this study. Tensile strength and 
ultimate strain is calculated by 4-point bending test 
according to JCI-S-003-2007 (JCI. 2007). 

Fig.2 shows bending moment and curvature 
curves obtained from the experiment. The deflection 
hardening behavior in which the load increases after 
first cracking can be recognized from the results 
shown in Fig.2. 

Table.3 shows the characteristics of reinforcing 
bar. The data of D22 was not obtained by data error. 
In the experiment of this study, the reinforcing bar 
does not yield. 

Table.1 Characteristics of PVA fiber 
Length
(mm) 

Diameter 
(mm) 

Tensile strength 
(MPa) 

Elastic modulus 
(GPa) 

12.0 0.04 1690 40.6 

Table.2 Characteristics of ECC 
Fiber

volume 
fraction 

(%)

Tensile 
strength*

(MPa) 

Ultimate 
strain* 

(%)

Compressive 
strength
(MPa) 

Elastic  
modulus 

(GPa) 

2.0 4.24 1.25 47.9 16.2 
  * By 4-point bending test (JCI-S-003-2007)

Table.3 Characteristics of reinforcing bar 

Type of bar 
Yield  

strength
(MPa) 

Tensile strength 
(MPa) 

Elastic
 modulus 

(GPa) 
D10 378 533 192 
D13 369 543 193 
D16 442 665 190 
D22   190* 

   *: value of D16 
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Fig.2 Bending moment and Curvature curves 

3 SPECIMENS

The shape of specimen is shown in Fig.3. The slits 
are set in the two side of specimen to cause splitting 
cracks around reinforcing bar. The parameters of 
specimens are reinforcing bar diameter (db=10, 13, 

16, 22 mm) and cover thickness (C). Cover thick-
ness is adjusted by the size of slit.  

Three specimens are tested for each parameter, 
and total number is 48. Specimen list is shown in 
Table.4. To investigate the size effect of bond be-
havior between ECC and reinforcing bar, size of 
specimen is proportionate to the diameter of rein-
forcing bar. Sectional size of specimen is set to 
square by 14 times of reinforcing bar diameter, and 
bond length is 4 times of the bar diameter. The other 
parameter is cover thickness, which is set to 0.5 – 
2.0 times of reinforcing bar diameter. At the both 
ends of reinforcing bar of 1.5 times of the bar diame-
ter, the bar is covered by Teflon sheet to insulate the 
bond to ECC. 

Slit

Teflon sheet

4db1.5db1.5db

14db

800mm

Cdb
14
db

Cast 
direction

Load direction

Fig.3 Shape of specimen 

Table.4 Specimen list 

Name of 
specimen 

Diameter 
db (mm) 

Sectional 
size

(mm) 
C/db

Cover 
thick-
ness

C (mm) 
D10-05- 1~3 0.5 5 
D10-10- 1~3 1.0 10 
D10-15- 1~3 1.5 15 
D10-20- 1~3 

10 140×140 

2.0 20 
D13-05- 1~3 0.5 6.5 
D13-10- 1~3 1.0 13 
D13-15- 1~3 1.5 19.5 
D13-20- 1~3 

13 182×182 

2.0 26 
D16-05- 1~3 0.5 8 
D16-10- 1~3 1.0 16 
D16-15- 1~3 1.5 24 
D16-20- 1~3 

16 224×224 

2.0 32 
D22-05- 1~3 0.5 11 
D22-10- 1~3 1.0 22 
D22-15- 1~3 1.5 33 
D22-20- 1~3 

22 308×308 

2.0 44 

4 LOADING AND MEASUREMENTS 

Fig.4 shows the method of loading. The loading is 
conducted by monotonic pullout test. Teflon sheet is 
set between specimen and support plate to not re-
strict lateral displacement of ECC block. Measure-
ment items are pullout load and free end slippage. 
(Refer to the Fig.4 for the meaning of "load end" and 
"free end".) 
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Fig.4 Method of pullout test 

5 TEST RESULTS 

Fig.5 shows the examples of sketch of specimens af-
ter loading. In case of the small cover thickness, 
splitting cracks were recognized between reinforcing 
bar and the slit at the load end.  

The reinforcing bar diameter increases, the ten-
dency that the splitting cracks took place through 
both slits is observed. The observed crack of load 
end is more remarkable than free end. 

Fig.6 shows the relationship between bond stress 
and load end slippage (τ-s relationship). Bond stress 
is the average value of bonding surface area. The 
load end slippage is calculated by free end slippage 
adding elongation of reinforcing bar under the uni-
form bond stress assumption. After the maximum 
bond stress, the bond stress decreases gradually 
without sudden failure. The slope of decrement of 
bond stress becomes larger as the maximum bond 
stress increases. 

Fig.7 shows the relationship between bond 
strength (τmax) and reinforcing bar diameter. In all 
cases, bond strength decreases with increasing rein-
forcing bar diameter. Fig.8 shows the relationship 
between the bond strength and cover thickness. 
Bond strength tends to increase with cover thick-
ness. The size of reinforcing bar seems to not so ef-
fect on the increasing ratio. 

Load end         Free end 
(D10 C/db=1.5) 

Load end         Free end 
(D22 C/db=1.5) 

Fig.5 Splitting crack after loading
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Fig.6 Bond stress and load end slippage curves 
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6 SIZE EFFECT ON BOND STRENGTH  

It is known that the size effect of HPFRCC is ex-
pressed by the power of the highly-stressed volume 
(Yamada, K. 2001). In this paper, the evaluation of 
size effect for bond strength is conducted quantita-
tively by the result of pullout test.  

The highly-stressed volume in pullout test is de-
fined as the volume of a cylindrical column as 
shown in Fig.9.  

Fig.10 shows the relation between the normalized 
bond strength and the normalized highly-stressed 
volume. The bond strength is standardized by bond 
strength of D10 specimen. Similarly, the highly-
stressed volume is standardized by volume of D10 
specimen. As for specimen of each ratio of cover 
thickness to diameter of reinforcing bar, the normal-
ized bond strength decreases with increasing of 
normalized highly-stressed volume. However, the 
united evaluation to all specimens is difficult. It may 
be considered that other indexes which represent 
stress condition of ECC around the reinforcing bar 
will be required.  
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Fig.10 Normalized bond strength-normalized highly-stressed 
volume relation 

In the case of ordinary reinforced concrete, Tepfers 
modeled the stress state in the circumference of a re-
inforcing bar in a hollow cylinder as shown in 
Fig.11, and calculated bond splitting strength 
(Tepfers, R. 1982). The perimetric stress has been 
assumed in three cases; (a) partially cracked elastic 
stage, (b) elastic stage and (c) plastic stage. Tepfers 
concluded that the bond splitting strength ranges be-
tween partially cracked elastic stage and plastic 
stage in case of ordinary concrete. 

In the case of ECC, it is considered that the ten-
sile stress after cracking takes place due to bridging 
effect of fiber. So, the perimetric stress in the cir-
cumference of the reinforcing bar in ECC is as-
sumed as (d) elastoplastic stage. The bond strength 
(τmax) is expressed by formula (1) as the summation 
of partially cracked elastic stage and plastic stage. 
The value of ri represents the length of internal 
cracks.

In this study, the value of ri is confirmed by re-
verse calculation from experimental bond strength 
using Formula (1). The value of cotα is assumed as 
the same value with ordinary concrete (Sakai, T., 
1999). It the value of ri exceeds ru, ri is fixed as ru.

Fig.12 shows the relationship between the ri and 
diameter of reinforcing bar. As for specimen of each 
ratio of cover thickness to diameter of reinforcing 
bar, ri increases with increasing of diameter of rein-
forcing bar. However, the tendency is not remark-
able.

Fig.13 shows the relationship between the ri and 
cover thickness. As for all specimens, the ri in-
creases with increasing of cover thickness. The line 
shown in the figure is calculated by the least-square  

method and Formula (2) is obtained. As shown in 
Fig.14, this result leads that the length of internal 
crack is not sensitive to the size of specimen. 
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Fig.11 The state of the circumference stress of reinforcing bar 
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The length of internal crack is seemed to be affected 
by cover thickness, and it is suggested that stress 
transfer in the reinforcing bar circumference is de-
termined by cover thickness. 

 Fig.15 shows the relationship between the ex-
perimental value and the calculated value of bond 
strength. The experimental values are averaged for 
three same specimens. The calculated value is ob-
tained by Formulas (1) and (2). The calculated val-
ues well correspond to the experimental values. 

0 5 10 15 200

5

10

15

20

C/db=0.5
C/db=1.0
C/db=1.5
C/db=2.0

Calculated value (MPa)

Ex
pe

rim
en

ta
l v

al
ue

 (M
Pa

)

Fig.15 Experimental value-Calculated value relation of bond 
strength

7 CONCLUSIONS 

1. In case of the small cover thickness, splitting 
cracks were recognized between reinforcing bar 
and the slit. 

2. The size effect is clearly recognized on the bond 
strength by the ratio of cover thickness to diame-
ter of reinforcing bars. 

3. From the result of evaluation of bond strength 
using highly-stressed volume, the normalized 
bond strength decreases with increasing of nor-
malized highly-stressed volume. 

4. The length of internal crack is evaluated by the 
assumption of the elastoplastic stage in which 
the perimetric stress is expressed by the summa-
tion of partially cracked elastic stage and plastic 
stage. The length of internal crack is affected by 
cover thickness rather than the size of specimen. 
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