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ABSTRACT 
 
In this paper, we describe a parallel solution scheme of 
inverse dynamics, and its application to flexible 
manipulators where elastic deformation and vibration 
normally occur in constituting link members. The scheme 
is developed by using the Finite Element Method (FEM), 
which evaluates the analyzed model in absolute Cartesian 
coordinates, with the equation of motion expressed in 
dimension of force. The calculated nodal forces are 
converted into joint torques by using a matrix form 
equation divided into terms of force, transformation 
between coordinates, and length. Therefore, information 
from the entire system can be handled in parallel, which 
makes it seamless in application to any type of link 
system regardless of its stiffness value. The proposed 
scheme is combined with a kinematics solution scheme 
also developed by using the FEM, which conducts target 
trajectories for flexible manipulators. Numerical tests are 
carried out on simple link systems to verify the validity of 
the proposed scheme. 
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1. Introduction 
 
Dynamic equations conducted by generally used schemes, 
such as the Newton-Euler method or the Lagrangian 
method, include interdependent variables between the 
constituting links, since they are evaluated in relative 
polar coordinates and in dimension of torque. 
Accordingly, it will become highly complicated to derive 
inverse dynamics of closed-loop link mechanisms, or of 
continuously transforming ones. In contrast, a parallel 
solution scheme, developed by using the Finite Element 
Method (FEM), evaluates the analyzed model in absolute 
Cartesian coordinates with the equation of motion 
expressed in dimension of force [1]. By taking advantage 
of natural characteristics of the FEM, i.e., the capability 
of expressing the behavior of each discrete element as 
well as that of the entire continuous system, local 

information such as nodal forces and displacements can 
be calculated in parallel. The nodal forces are calculated 
incrementally in a matrix form, which does not require 
any revision of the outside frame, and the variables inside 
can be revised by simply changing the input data in the 
case of a physical change in the hardware system. The 
calculated nodal forces are then converted into joint 
torques by using a matrix form equation divided into 
terms of force, transformation between coordinates, and 
length. The structure of the algorithm makes it seamless 
in application to different types of link mechanisms under 
various boundary conditions such as open- or closed-loop 
link mechanism [2,3]. The scheme can be applied to such 
circumstances where robotic tasks include motions that 
generate open and closed loops alternately.  
 
On the other hand, the lightening of constituting members 
and devices is taking place in many robots, in order to 
increase their mobility. It may also increase safety among 
users, but it may well cause deficiency of structural 
strength of the architecture. Moreover, the elastic 
vibration that occurred in the link members becomes a 
serious issue for the control. Therefore, strong efforts 
have been taken to model [4-7] and calculate inverse 
dynamics [8] of robotic arms with elastic members. 
However, a large barrier before calculation of the inverse 
dynamics is possible, which comes from difficulties in 
handling the dynamic equations. 
 
In this paper, we describe a three-dimensional version of 
the parallel solution scheme of inverse dynamics for link 
mechanisms. A kinematics solution scheme is also 
developed by using the FEM and combined with the 
parallel solution scheme, to enable consideration of 
flexural stiffness of the link members. We used the 
equation of motion based on the principle of virtual work 
considering both operation distance and deformation 
values in displacements. The calculated trajectories for 
flexible manipulators are applied as input for the parallel 
solution scheme of inverse dynamics. Numerical tests are 
carried out on several types of simple flexible 
manipulators, and the results are compared with those of 
rigid body models to verify the validity of the proposed 
scheme.  
 
 



 

 

2. Parallel Solution Scheme of Inverse 
Dynamics  
 
Figure 1 shows the nodal forces (based on global 
coordinates) acting on the i-th link (i=1~n) in a three-
dimensional open-loop n-link mechanism. For simplicity, 
the distributed nodal forces acting along the link member 
are shown as concentrated force acting at the center of 
gravity. The joint torque τ ix required around the x-
elemental axis on the i-th link, for example, is determined 
by adding an i+1-th joint torque τ(i+1)x to the sum of 
inertia moments acting on this link, and is expressed by 
nodal forces Fiy and FiΦx based on elemental (or link) 
coordinates as follows: 
 

úix = liCFiy + li(
nX

j=i+1

Fj)y + Fiûx +ú(i+1)x ,       (1) 

 
where liC is the length between the former joint and the 
center of gravity and li is the link length. By considering 
other components around the y- and z-axes, and arranging 
them into global coordinates (X, Y, Z) in a matrix form, 
the joint torque vector is expressed as 
 

fúng = [Ln][Tn]fPng,                       (2) 
 
where {Pn} is a vector related to nodal force, defined as 
 

fPng =
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(3) 
 
The transformation matrix [Tn] is expressed as 
 

[Tn] = [hn][T nGE ],                         (4) 
 
where [hn] is a correction matrix between x-y and z-x 
coordinate systems, which simply inverts their signs in 
the y-axis direction. [Tn

GE] is a transformation matrix 
between global and elemental coordinates which is 
expressed as 
 

h
TnGE

i
=

2666666666664

T1

T2 0

T3

Å
Å

0 Å
Tn

3777777777775
,

        (5) 

 
where 
 h

Ti

i
=

264 Ai 0 0

0 Ai 0

0 0 Ai

375
,               

(6a) 

and 
 h

Ai

i
=

264 cosûiXx cosûiY x cosûiZx

cosûiXy cosûiY y cosûiZy

cosûiXz cosûiY z cosûiZz

375
,

        
(6b) 

 
where φiXx, for example, represents the rotational angle 
between X-global and x-elemental coordinates. [Ln] is a 
matrix related to member length and is expressed as 
 

[Ln] = [T nÉ ][É
n],                         (7) 

 
where [Tn

Λ ] is a transformation matrix between each 
elemental coordinate, and is expressed as 
 

Fig. 1 Nodal forces acting on i -th link in an open-
loop n-link mechanism 
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[Tij] (i,j=1~n) is expressed using matrix [Ai] shown above: 
 

[Tij ] = [Ai][Aj ]
T

.                       (9) 
 
 [Λn] is expressed as  
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Information on the i+1~n link is summed by multiplying 
the [Ln] matrix by vector [Tn]{Pn}, which is the nodal 
force vector transformed into elemental coordinates. In 
cases of closed-loop link mechanisms, the above matrix is 
divided into multiple parts, as shown below, to fix the 
configuration of passive joints as well as the torque 
allocation undertaken by active joints.  
 

[Ln] =

"
La 0

0 Lb

#
                         (12) 

 
The suffixes a and b are the numbers of links (a+b=n) 
when the mechanism is divided into two parts. This is the 
only process that is different between the algorithms of 
open- and closed-loop link mechanisms, which of course, 
can be automatically alternated in the program. A vector 
related to incremental nodal forces acting on the i-th link 
is defined using the nodal numbers k (=2i): 
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                (13) 

 
Thus, the vector related to the nodal force acting on the i-
th link at t+Δt is successively calculated using the above 
vector as follows: 
 

fPigt+Å t = fPigt + fÅpkg.             (14) 
 
The successive values of the n-link joint torque are then 
obtained by substituting Eq. (14) into Eq. (2).  
 
A link mechanism constituted of a joint and a flexible link 
member, is modeled by using linear Timoshenko beam 
elements. Figure 2 shows an outline of the finite element 
modeling by using the beam elements. The element mass 
is divided equally between the two nodal points 
constituting the element. The numerical integration point 
for evaluating the stiffness of the element is fixed at the 
midpoint where accuracy against bending deformation is 
mathematically guaranteed in one-point integration. A 
more simple pin-joint rigid-bar link mechanism can also 
be expressed by summing the total mass of the elements 
at the nodal point expressing the center of gravity. The 
mass of a motor can be considered by placing the mass at 
the corresponding nodal points. Four-element subdivision 
per link is adopted in this study to maintain accuracy, and 
at the same time, to lower the calculation cost. 
 
 
3. Solution Scheme of Kinematics for Flexible 
Manipulators  
 
On calculating inverse dynamics for flexible 
manipulators, we need target trajectories that compensate 
for inertial forces acting at the link members, and also 
stiffness of the members. Therefore, a solution scheme of 

Fig. 2 Finite element modeling of a link member 
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kinematics is also developed by using the FEM, and 
combined with the previously described solution scheme 
of inverse dynamics to handle analyzed models 
comprehensively in a single calculation process.  
 
The incremental equation of motion at time t+ Δ t 
conducted by the principle of virtual work is expressed as 
 
[M]f°ugt+Åt+[C]f _udgt+Åt+[K]fÅudg = fFgt+ÅtÄfRgt, 

(15) 
 
where [M] is the total mass matrix, [C] the total damping 
matrix, [K] the total stiffness matrix, {F} the external 
force vector and {R} the internal force vector. {ud} is the 
displacement vector which contains only deformation 
values, and {u} is the displacement vector which is the 
sum of both operation distance and deformation values, 
expressed as 
 

fudgt+Åt = fudgt + fÅudg,                (16a) 
fumgt+Åt = fumgt + fÅumg,                (16b) 

fugt+Åt = fudgt+Åt+ fumgt+Åt,                (16c) 
 
where {um} is the displacement vector which contains 
only operation distance values. By applying {um} as input 
in time integration loop of Eq. (15), we can successively 
obtain {ud} at each time step. Final target trajectories 
considering the effects of stiffness and damping are then 
obtained by using Eq. (16c). The resultant forces acting 
on the elements can also be calculated by using the 
obtained displacements. Newmark’s β method (δ=1/2, 
β=1/4) is used as the time integration scheme to solve 
the incremental equation of motion.  
 
 
4. Numerical Estimations 
 
The parallel solution scheme for calculating inverse 
dynamics is applied to the joint torque calculation of an 
in-plane rigid-body link mechanism to examine the 
accuracy of torque curves against the number of 
incremental steps. Figure 3(a) shows the target trajectory 
for a 1.0s motion given in the vertical plane for a three-
link mechanism (each link length: 40cm; each link 
weight: 215g; center of gravity at midpoint). Figures 3(b) 
and 3(c) show the torque curves obtained by using the 
conventional and proposed schemes. As shown in Fig. 
3(b), the accuracy of the torque values does not depend 
upon the number of incremental steps when we use the 
dynamic equations that supply exact solutions. In contrast, 
the proposed scheme depends upon the number of 
incremental steps (see Fig. 3(c)), since the torque values 
are calculated approximately by summing the incremental 
information of each step. However, the results agree well 
when 50 to 100 steps per 1.0s of operating time, that is, 
less than 1 step per 10ms, are chosen.  
 

The time possession of each process in a control 
procedure is investigated to verify the sufficiency of the 
number of incremental steps against actual control (see 
Fig. 4). There are two main calculation processes during 
the control. One is the calculation of inverse dynamics, 
which may differ, of course, between the conventional 
and proposed schemes. The other is the calculation of 
control and output function, which is a process common 
to both schemes. The calculation time of inverse 
dynamics by using the proposed scheme is about three 
times longer than that by using the conventional dynamic 
equations. However, the process time is sufficiently short 
compared to the time of the entire process as shown in the 
figure, when, for example, the sampling time is selected 
to be a practical value of 10ms. Moreover, the accuracy of 
torque values is ensured by calculating only 1 step per 
sampling time, due to the estimation of the previous result. 

Fig. 3 Accuracy of torque curves against number of 
steps  
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(b) Conventional scheme 
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(c) Proposed scheme 
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Fig. 4 Time possession of each process in control  
procedure 
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Estimations of calculation time were performed by a 
Pentium PC (CPU: 500MHz, memory: 512MB). 
 
Although special attention must be given to the number of 
incremental steps, we can obtain torque curves for a 
closed-loop link mechanism or even those for a 
continuously transforming mechanism without revising 
any part of the numerical algorithm in the solution 

scheme [2,3]. This is one of the biggest merits of using 
the proposed scheme. 
 
 
5. Numerical Examples 
 
Numerical tests are carried out on flexible manipulators. 
Damping is neglected in the calculations. Figure 5(a) 
shows a target trajectory of a 0.2s motion given in the 
horizontal plane for a rigid body 1-link system (link 
length: 40cm; weight: 22.4g; flexural stiffness: perfect 
rigidity). By using this trajectory as input for the 
kinematics solution scheme described above, a trajectory 
considering the effect of stiffness is obtained as shown in 
Fig. 5(b). The flexural stiffness for the flexible model is 
given as 0.46Nm. From the results, we can see the 
difference between the deformations of the two link 
systems. Figure 6 shows the joint torque curves for the 
two models obtained by the inverse dynamics solution 
scheme, using the trajectories of Figs. 5(a) and 5(b) as 
input data. We can see that a smooth joint torque curve is 
obtained for the rigid body model. In contrast, a vibration 
can be observed in the torque curve of the flexible model 
due to the flexural vibration that occurred in the model. A 
similar phenomenon appears in the time histories of axial 
force (see Fig. 7), where the time history for the flexible 
model vibrates especially after the motion has stopped. 
The estimated natural frequency of the model is in good 
agreement with the theoretical value, which is 10.02Hz. 
 
Another numerical test for a 2-link system is carried out.
A different stiffness value for each link member is 
adopted to see the influence of the parameter in such 
cases. Parameters for the model are as follows: each link 
length: 20cm, each link weight: 11.2g, and flexural 
stiffness: 0.46Nm (Link 1) and 0.046Nm (Link 2). Joint 1 
is rotated for 0.5rad, and Joint 2 is rotated for 1.0rad in 
0.2s. As we can see in Fig. 8, Link 2 is much more 
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Fig. 5 Kinematics of a 1-link manipulator 
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deformed than Link 1 due to the lower stiffness value. 
Moreover, a combination of various vibration modes can 
be observed in both the target trajectory (Fig. 9) and the 
torque curves (Fig. 10). This comes from the difference of 
natural frequencies of each link. The results lead us to 
conclude that the solution scheme of kinematics 
developed by using FEM can handle the systems with 
links of various stiffness values. Also, it is confirmed that 
the parallel solution scheme of inverse dynamics can be 
commonly applied, and without any revision, to both rigid 
body models and flexible models.  
 
 
6. Conclusion 
 
A parallel solution scheme of inverse dynamics is applied 
to flexible manipulators, where elastic deformation and 
vibration normally occur in constituting link members. It 
derives nodal forces in parallel and converts them to the 
joint torque, which can commonly be applied to any type 
of link mechanism regardless of its stiffness value. No 
revision of the basic numerical algorithm is required 
regardless of the type of model we use. This function 
cannot be realized by using the conventional schemes 
based upon the generally used dynamic equations. The 

scheme is also valid for link mechanisms under various 
boundary conditions, which may help us to achieve 
stability and smoothness in continuous motions of 
complex robotic architecture with elastic members. 
Control experiments on flexible manipulators using the 
proposed scheme are scheduled. 
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Fig. 9 Target trajectory (rotational angle) 
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