機構の強度的安全性を優先した姿勢決定および動作計画 - 軟弱ロボティクスの提案-

○磯部大吾郎(筑波大学) 石井悠一郎(三協フロンテア(株))

Attitude Determination and Motion Planning of Mechanisms with Structural Safety as Priority — Proposal of Feeble Robotics—

ODaigoro ISOBE (Univ. of Tsukuba) and Yuichiro ISHII (Sankyo Frontier Co., Ltd.)

Abstract: In this paper, a new way of attitude determination and motion planning of robotic architecture for avoiding structural failure by restraining total strain energy stored in the architecture is described. It leads to a concept of feeble robotics, where robots are encouraged to protect themselves from destruction rather than to accomplish the given tasks. In the proposed motion-planning algorithm, when the risk of member yielding becomes higher while the robot is in motion, a safer attitude for restraining its total strain energy is searched. At the next step, a new trajectory is created, beginning with the obtained attitude, and ends with the final target which is initially given. The procedure is repeated until a converged attitude is obtained. Risk for member yielding and total strain energy is searched by using the Finite Element Method (FEM), and an attitude for restraining total strain energy is searched by using the Direct Search Method (DSM). Some numerical tests are carried out with a truss-type robotic architecture and a 3-link manipulator, and interesting results are obtained by changing the judgment and target levels of structural parameters.

Key Words: Attitude Determination, Motion Planning, Finite Element Method, Structural Safety, Feeble Robotics

1.はじめに

アシモフのロボット3原則第3条に、「ロボット は、第1条および第2条に反する恐れのない限り、 自分の身を守らなければならない」とある. すなわ ち、人間への危害を加えることなく、命令に服従し、 その上で自分の身を守る義務があるというのであ る. 一方, 例えばロボットの姿勢決定および動作計 画については従来から様々な議論がされており,可 操作度に着目した研究[1][2], 消費エネルギの最小 化[3]や複数ロボットの協調作業を目指した研究[4] などがある.これらの研究では、上記3原則の中で は第2条(命令服従,換言すればタスク遂行)の遵守 を目的としていると考えられる. そこで我々は、ロ ボットの姿勢決定および動作計画において第3条 の遵守を目的とした、"軟弱ロボティクス"の概念 を提案する. これは、タスクを実行する際に、機構 内の強度的危険性を常に計算し,場合によっては目 標とする姿勢や軌道への正確な追随よりも,機構の 破損回避を優先させようという概念である.

本研究では、機構の強度的安全性を優先した姿勢 決定・動作計画を行うため、有限要素法(FEM) を用いて機構内に蓄積される全ひずみエネルギを 計算するとともに、断面力レベルでの部材の強度的 な危険性を求め、強度的に危険だと判定された瞬間 に全ひずみエネルギを抑制させるように姿勢また は軌道を修正するアルゴリズムを開発した.適用例 としては簡単なトラス型ロボット機構の姿勢決定 問題および3リンクマニピュレータに対する動作 計画問題を挙げ、全ひずみエネルギ抑制目標レベル や降伏危険性判定レベルなどの、構造強度パラメー タが解析結果に対して与える影響を調べた.

2.強度的安全性を優先したアルゴリズム

2.1 全ひずみエネルギの抑制

ロボット機構内に蓄積される全ひずみエネルギ は、姿勢すなわち駆動部の移動量に依存する多変数 関数となり、本研究では次式に基づき有限要素法に より数値的に求める.

$$U = \int_{V} \{\varepsilon\}^{T} \{\sigma\} dV = \sum_{i=1}^{n} \{\varepsilon\}_{i}^{T} \{\sigma\}_{i} l_{i} \qquad (1)$$

ここで、*i*は要素番号、*n*は総要素数、{ ε },*i*は*i*番 目の要素のひずみベクトル、{ σ },*i*は断面力ベクト ル、*l*,*i*は要素長である.このような多変数関数に対 し、直接探索法(Direct Search Method, DSM)を用 いて最小化を図った.直接探索法は1変数関数の極 値を探索するための収束計算手法であり、変数の初 期値と増分値を適当に与え、前後のステップにおけ る関数値の大小関係の比較を反復的に実施する.例 えば関数 *f(x)*の極小値を探索する場合は、前ステッ プs-1と現ステップsとの関係が*f(x_{s-l})* > *f(x_s)*であれ ば、変数増分値を変化させずに次ステップへ移行す る.一方、*f(x_{s-l})* < *f(x_s)*となる場合は、変数増分値を - 1/2 倍の値に置き換えて次ステップへ移行し、収 束が判定されるまで反復処理を行う.なお、収束判 定には次式の無次元化された条件式を用いた.

$$\left|\frac{f(x_s) - f(x_{s-1})}{f(x_0)}\right| < \alpha \tag{2}$$

ここで, x₀, f(x₀) はそれぞれ,変数および関数の初 期値である.本研究では,この変数としては節点の 位置,関数としては全ひずみエネルギを使用した. また, αは収束判定ノルムである.ロボット機構を 構成する複数の駆動部に対して直接探索法を順に 適用し,全ひずみエネルギの抑制を図った.

2.2 姿勢決定アルゴリズム

全ひずみエネルギの抑制を図った姿勢を導出す る場合,実用上は必ずしもその値を最小化する必要 はなく,部材降伏が生じる危険を回避するのみで十 分である.そこで,機構が断面力レベルで部材降伏 するときの全ひずみエネルギの値を臨界ひずみエ ネルギ Ucと定義し,この値に抑制目標レベル ku (0< ku<1)を掛け,全ひずみエネルギの抑制目標 値とした.臨界ひずみエネルギ Ucの値は,機構の 姿勢や外力の作用方向などに依存して変化するた め,姿勢が修正されるたびに再計算する必要がある.

Fig.1 Attitude-determination algorithm with structural safety as priority

Fig.2 Motion-planning algorithm with structural safety as priority

姿勢決定アルゴリズムのフローチャートを Fig.1 に示す.本アルゴリズムでは、まず臨界ひずみエネ ルギ Ucを算出し、次に駆動部の移動量を変数とし て直接探索法を適用し、全ての駆動部に対して探索 が終了、または目標レベル kuまで全ひずみエネル ギが抑制された時点で姿勢を決定する.臨界ひずみ エネルギや時々刻々の全ひずみエネルギを求める 箇所で有限要素法が用いられる.

2.3 動作計画アルゴリズム

本研究で構築した動作計画アルゴリズム (Fig.2 参照)では、ロボットの動作軌道上で部材の断面力 レベルでの降伏危険性が判定されると、前節に示し た姿勢決定が行われ、得られた姿勢を経由して最終 的な目標姿勢に向かう軌道が作成される. すなわち、 本アルゴリズムでは、ロボットが強度的に危険な姿 勢になるたびに、安全な軌道を模索して軌道修正が 行われる.

各要素の降伏危険性レベルの判定には次式を用 いた.

$$f_y \equiv \left(\frac{N}{N_0}\right)^2 + \left(\frac{M_x}{M_{x0}}\right)^2 + \left(\frac{M_y}{M_{y0}}\right)^2 = k_y \qquad (3)$$

ここで、 N, M_x, M_y はそれぞれ、軸力、x, y軸回 りの曲げモーメントであり、添字^{*}0"は全断面塑 性値であることを意味する.部材の断面力レベルで の降伏危険性は、初めにその判定レベル k_y (0< k_y <1)を設定し、上式の左辺の値が k_y を超えるか否 かで判定する. k_y を高く設定するほど、強度的に危 険な姿勢になって初めて軌道修正が行われる.逆に k_y を低く設定すると、強度的にそれほど危険でなく ても軌道修正が行われてしまう.後述するように、 k_y と k_U という2つの構造強度パラメータの間には、 興味深い相関関係と設定可能領域が存在する.

3.トラス型ロボット機構の姿勢決定

Fig.3 に示すようなトラス型ロボット機構に対し, 先端部分に静的水平荷重 F = 1.0 kN を与え,根元 のリニアアクチュエータから順(Actuator ①→ Actuator ②→ ……)に直接探索法を適用して姿勢

Fig.3 Truss-type robotic architecture

Fig.4(a) Obtained attitude and transition of total strain energy $(k_U = 0.8)$

Fig.4(b) Obtained attitude and transition of total strain energy $(k_U = 0.5)$

決定を行った. なお, 各リニアアクチュエータの伸 縮倍率を 0.9~1.1 倍と設定した. 1 リンク部材を 2 つの線形チモシェンコはり要素で表現し, 部材両端 はピン関節とした. また, 直接探索法の収束判定/ ルムαを 0.003 とした.

全ひずみエネルギUの抑制目標レベル k_U を0.8, 0.5 とした場合の解析結果をそれぞれ Fig.4(a), Fig.4(b)に示す. $k_U = 0.8$ と設定した場合では,全 ひずみエネルギを目標レベルまで抑制するために 根元の Actuator ①から④までに対して順に直接探 索法が適用され,計算が終了した.またこのとき, 外力方向に向かって倒れる姿勢が得られた.次に, $k_U = 0.5$ と設定した場合には,Actuator ⑦までの リニアアクチュエータに対して直接探索法が適用 され,全ひずみエネルギが目標レベルまで抑制され た.この場合には, $k_U = 0.8$ の場合よりもさらに傾 いた姿勢が得られた.なお、1ステップ当たりに要 した計算時間は約 0.42 秒 (Intel Pentium4 1.4GHz) であった.

4.3 リンクマニピュレータの動作計画

Fig.5 に示すような3リンクマニピュレータに対 し、荷物をまっすぐ上から水平位置にまで下ろすタ スクを与えた場合について、動作計画を実施した. このような問題の場合、根元の関節から収束計算を 行うと、1つ目の関節のみで判定と抑制が繰り返さ れてしまい、荷物を地上付近まで下ろすというタス クを実行できなくなる.そこで、ここでは先端関節 から順(Joint 3→Joint 2→Joint 1)に直接探索法 を適用した.モデル化にあたっては、前章のトラス 型ロボット機構の場合と同様に、1リンク部材を2 つの線形チモシェンコはり要素で表現した.また、 モータに十分なトルクが発生していることを想定 し、関節部分は剛節とみなした.

初めに,降伏危険性の判定レベル k_vおよび全ひ ずみエネルギの抑制目標レベル kuをそれぞれ case

Fig.5 3-link manipulator

Fig.6(a) Obtained motion plan (case A)

Fig.6(b) Obtained motion plan (case B)

Fig.7 Transition of total strain energy

A: (0.5, 0.5), case B: (0.5, 0.4)とした場合に得られ た動作軌道と全ひずみエネルギの推移を Fig.6(a), Fig.6(b), Fig.7 に示す.得られた動作軌道を示す図 では,収束計算により全ひずみエネルギが目標値に まで抑制された時点での姿勢が3つおきに示され, 全ひずみエネルギの推移を示す図では,マニピュレ ータの姿勢が収束するまでの過程が示されている. Fig.7 に示すように,降伏危険性の判定レベル k_vに 対して全ひずみエネルギの抑制目標レベル kvが相 対的に大きい場合 (case A) には、降伏危険性が判 定されてからひずみエネルギが抑制されるまでの ステップ数が少なく、小刻みな反復を繰り返した後 に最終姿勢に収束した.一方、全ひずみエネルギの 抑制目標レベル kvが相対的に小さい場合 (case B) には、判定から抑制までに姿勢を大きく変える余裕 が生じ、結果的に少ないステップ数で計算が終了し た.また Fig.6 から、全ひずみエネルギの抑制目標 レベルが低いほど、多数の駆動部を利用して抑制効 果を上げていることが分かる.このように、目標軌 道への正確な追随は実現しなかったが、先端部分を 根元部分に近づけ、そこに発生する曲げによるひず みエネルギを緩和するような軌道が得られた.

次に、降伏危険性の判定レベルを引き上げ、部材 の強度を最大限に利用した場合について検討を行 った.ここでは、 k_y および k_U の値をそれぞれ、case C: (0.8, 0.7)、case D: (0.8, 0.3) とした場合の例を示 す.Fig.8(a)および Fig.8(b)にそれぞれの場合に得 られた動作軌道を示す(Fig.8(a)は 3 つおきに姿勢 を表示).また、全ひずみエネルギの推移を Fig.9 に示す. k_y に対して k_U の値が相対的に小さいと、 収束計算の反復回数は減少し、姿勢も大きく変化し た.総計算時間は、case D の場合で約 5 分であっ た (Intel Pentium4 1.4GHz).

前述のように、*kyと ku*には相関関係および設定 可能領域が存在し、本例題の場合には Fig.10 に示 すようになった.例えば、*ku*の値を case A の場合 よりもさらに大きくすると、降伏危険性が判定され る時点でひずみエネルギ値が抑制目標レベルより も小さいため収束計算が実行されず、解が得られな い領域が出現する.また逆に、*ku*の値を case B の 場合よりもさらに小さくすると、ひずみエネルギ値 をその目標レベルまで下げようとしても物理的に 不可能となり、解に収束しない領域が出現する.一 方、設定可能領域内では、なるべく *ky*を高くかつ *ku*を低く設定すると、軌道更新の回数が減少し、 目標軌道から大きくずれた動作軌道が得られる.こ れは、降伏危険性の判定時と全ひずみエネルギ抑制

Fig.8(a) Obtained motion plan (case C)

Fig.8(b) Obtained motion plan (case D)

Fig.9 Transition of total strain energy

後の姿勢が大きく異なり、その結果、降伏危険性が 再判定されにくいように軌道が大きく修正される ためである.また、このようにパラメータを設定す ることにより、強度的にぎりぎりの状態まで動作し、 判定後の軌道修正では極端に安全な姿勢をとろう とするような、軟弱な人間の動作によく似た軌道が 求められる.この結果は、人間工学的な観点からも 大変に興味深い.

Fig.10 Relationship between ky and ku

5.最後に

本研究では、タスクの遂行よりも自身の破壊回避 を優先するという、軟弱ロボティクスの概念に基づ いた姿勢決定および動作計画法を提案した。簡単な 例題に適用した結果、機構内のひずみエネルギを抑 制するため外力方向に向かうように姿勢を変化さ せたり、根元部分の負担を軽減するように腕全体を 折り曲げたりするなどの、**軟弱な挙動**の様子が 確認された.特に、マニピュレータの動作計画問題 では、機構強度を最大限に利用し、危険な状態にな って初めて全ひずみエネルギを最小限に抑制する ようにパラメータを設定すると、軌道修正回数が少 なく、かつ人間の挙動に酷似した興味深い動作軌道 が得られることが分かった.今後は、動力学の考慮 および短時間処理可能なアルゴリズムの開発を目 指し、実機への適用を試みたい.

参考文献

- 吉川 恒夫 ** ロボットアームの可操作度", 日本ロボット学会誌,第2巻,第1号, pp.63-67, 1984.
- [2] 平山 智信, 永谷 圭司, 五福 明夫 :" 可操 作性を考慮した移動マニピュレータの動 作計画", ロボティクス・メカトロニクス 講演会, 1A1-B5, 2001.
- [3] 小野 京右,劉 栄強: 2足歩行ロボット の最適軌道計画解(第1報,最適軌道解析 法と全関節駆動系の最適解)",日本機械学 会論文集(C編),第67巻,第660号, pp.2601-2608,2000.
- [4] 毛利 彰, 平野 剛, 山本 元司 ※ 2台のマ ニピュレータの協調動作経路計画", 計測 自動制御学会論文集, 第 34 巻, 第 8 号, pp.935-940, 1998.