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Abstract – In this study, a scheme using the Finite Element 
Method (FEM) for calculating inverse dynamics is proposed 
and applied to open- and closed-loop link mechanisms. In this 
scheme, the entire system is subdivided into discrete elements 
and evaluated as a continuum. A single-link structure of a pin 
joint and a rigid bar is expressed by using the Shifted 
Integration (SI) technique. The proposed scheme calculates 
nodal forces by evaluating equations of motion in a matrix 
form, and thus information from the entire system can be 
handled in parallel. The obtained nodal forces are then used to 
calculate the joint torque in the system. Simple numerical tests 
on open- and closed-loop link mechanisms are carried out, and 
it is verified that the scheme can be used as a unified 
numerical scheme independent of the system configuration. 

I. INTRODUCTION 

There is a difficulty in calculating the inverse dynamics 
for the closed-loop mechanism using conventional methods 
such as the Newton-Euler method or the Lagrangian method. 
This is due to the interdependence variables between the 
constituting links, which become impossible to derive when 
a chain is closed in the system using the former method. The 
latter method is also difficult to apply, since the derivation 
process of an equation considering the binding condition is 
very complicated. Generally, robotic tasks include motions 
that generate open and closed loops alternatively, and the 
dynamic equations of the system (or the numerical 
algorithm) require an instant revision during the motion. A 
unified numerical scheme for calculating the inverse 
dynamics is strongly desired, particularly for those cases of 
massive, quick-motion robots controlled by force. 

Isobe and Nakagawa proposed to apply the Finite 
Element Method (FEM), a widely used computational tool 
for analyzing structures, fluids, and so forth, to a control 
system of connected piezoelectric actuators, and achieved 
good control not only of the actuator itself but also of the 
entire system [1]. Isobe et al. implemented the FEM to a 
calculation scheme of inverse dynamics for 
hyper-redundant link mechanisms [2]. Using the 
characteristic of the FEM, which is the capability of 
expressing the behavior of each discrete element as well as 
that of the entire continuous system, local information such 
as nodal forces or displacements can be calculated in 
parallel. The FEM does not require reimplementation of 
dynamic equations in the software, and revision can be 
achieved simply by changing the input data in the case of a 
physical change in the hardware system.  

This study describes a unified numerical scheme for 
inverse dynamics of two-dimensional link mechanisms. 
Link mechanisms are modeled using linear Timoshenko 
beam elements based on the Shifted Integration (SI) 

technique [3], which was originally used in finite element 
analyses of framed structures. Nodal forces for obtaining 
target trajectories are calculated using the FEM, and the 
joint torque of each link is calculated based on a 
matrix-formed conversion equation between nodal forces 
and the joint torque. Some numerical tests are carried out 
for open- and closed-link mechanisms, to verify the validity 
of the proposed scheme as a unified numerical scheme 
independent of the system configuration. 

II. FINITE ELEMENT MODELING OF A LINK 
MECHANISM 

The SI technique, which is applied in order to model link 
mechanisms in this study, was originally developed as a 
finite element scheme for the analysis of framed structures. 
By considering the equivalence conditions between the 
strain energy approximations of a linear Timoshenko beam 
element and a physical model, the rigid-bodies spring model 
(RBSM), the relationship between the locations of a 
numerical integration point (s1) and a plastic hinge (r1) in 
the linear Timoshenko beam element (Ä1 î r1; s1 î 1) is 
obtained [3]. Referring to Fig. 1, it is expressed by the 
following equation: 

s1 = Är1 or r1 = Äs1;                                           (1)

where s1 and r1 are the positions of the numerical integration 
point in the finite element and the spring in the RBSM, 
respectively. Referring to the equation above, the rotational 
and shear spring placed at the left end (r1= -1) of an element 
can be expressed by shifting a numerical integration point in 
the element to the right end (s1=1). Various stiffness values 
of a link joint are then expressed by changing the stiffness of 
the spring (or the element). Fig. 2 shows the general concept 

Fig. 1. Linear Timoshenko beam element and its physical equivalent
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of modeling by the SI technique. As shown in the figure, a 
link mechanism formed by a motor and a link member can 
be modeled by placing a nodal point at the center of gravity, 
and by two Timoshenko beam elements with numerical 
integration points shifted to the opposite ends of the link 
joint. The elemental stiffness matrix is obtained using s1 , r1

and the normalized stiffness Cmot of the spring, as shown 
below: 

[K] = Cmot

Z

V
[B(s1)]T [D(r1)][B(s1)]dV;                  (2)

Various types of link joints (pin to rigid) can be expressed 
by varying Cmot between 0 and 1. The value 0 is used in this 
study to estimate the validity of the proposed scheme in the 
pin joint-rigid bar link mechanisms. A lumped mass matrix 
is also defined using the location of the numerical 
integration point s1. The diagonal components of the 
elemental mass matrix are: 

[M ] =

[m1 m1 m1
m1l2

12
m1l2

12
t1 m2 m2 m2

m2l2

12
m2l2

12
t2];    (3) 

where 

m1 = öAl(1 Ä s1)=2; m2 = öAl(1 + s1)=2;

t1 = öIzl(1 Ä s1)=2; t2 = öIzl(1 + s1)=2;
                (4) 

and r, A, l, and Iz are the density of the member, the 
cross-sectional area, the length of the element and the polar 
moment of area inertia, respectively. Based on the matrix, 
the total mass of the element assembles at r1=1 when the 
link joint is placed at r1= -1 (thus s1=1), and vice versa. A 
nodal point placed between two Timoshenko beam 
elements thus expresses the center of gravity in a link 
member (see Fig. 2).  

III. CALCULATION OF JOINT TORQUE IN N-LINK 
MECHANISM 

Fig. 3 shows the nodal forces (based on global 
coordinates) acting on the i-th link in a two-dimensional 
closed-loop n-link mechanism, and the configuration of 
links and nodal points. The joint torque τi required on the 

i-th link is determined by adding an i+1-th joint torque τi+1

to the sum of inertia moments acting on this link, and is 
expressed by nodal forces FiCx and FiCΦ based on elemental 
(or link) coordinates as follows: 

úi = liCFiCx + li(
nX

j=i+1

FjC)x + FiCû + úi+1;                (5) 

where liC is the length between the former joint and the 
center of gravity and li is the link length. By arranging (5) 
into global coordinates and in a matrix form, the joint torque 
vector is expressed as: 

fúng = [Ln][T n]fP ng;                                                      (6) 

where {Pn} is a vector related to nodal force, defined as 
follows: 

fP ng =

8
>>>>>><

>>>>>>:

P1

P2

Å
Å

Pn

9
>>>>>>=

>>>>>>;

;                                                           (7) 

where 

fPig =

8
>>>>>><

>>>>>>:

FiCX

FiCZPn
j=i+1 FjCXPn
j=i+1 FjCZ

FiCû

9
>>>>>>=

>>>>>>;

; (i = 1; ÅÅÅ; n)              (8) 

Using the rotational angleφbetween global and elemental 
(or link) coordinates, the transformation matrix [Tn] is 
expressed as: 

h
T n

i
=

2

666666666664

T1

T2 0
T3

Å
Å

0 Å
Tn

3

777777777775

;                   (9) 
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Fig. 2. Modeling of link mechanism by Shifted Integration technique 
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Fig. 3. Nodal forces acting on i -th link in closed-loop n-link mechanism 

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 342



where 

h
Ti

i
=

2

6666664

cosûi Äsinûi 0 0 0
sinûi cosûi 0 0 0

0 0 cosûi Äsinûi 0
0 0 sinûi cosûi 0
0 0 0 0 1

3

7777775
; (10) 

Note that the components are valid for two-dimensional 
cases. [Ln] is a matrix related to member length, which is 
expressed as: 

h
Ln

i
=

2

666666666664

L1 L2 L3 Å Å Å Ln

L2 L3 Å Å Å Ln

L3 Å Å Å Ln

Å Å Å Å
Å Å Å

0 Å Å
Ln

3

777777777775

;                (11)

where 

h
Li

i
=

h
liC 0 li 0 1

i
;                                    (12) 

Information on i+1~n link is summed by multiplying the 
above matrix with vector [Tn]{Pn}, which is the nodal force 
vector transformed into elemental coordinates. In cases of 
closed-loop link mechanisms, the above matrix is divided 
into multiple parts as shown in the equation below, to fix the 
configuration of passive joints as well as the torque 
allocation undertaken by active joints.  

[Ln] =

"
La 0
0 Lb

#
;
                                                      

(13)

The suffixes a and b are the number of links (a+b=n) if the 
mechanism is divided into two parts. This process is the 
only and the slightest difference of the algorithm between 
open- and closed-loop link mechanisms. A vector related to 
incremental nodal forces acting on the i-th link is defined 
using the nodal numbers: 

fÅpkg =

8
>>><

>>>:

ÅfkX
ÅfkZP2n+1

h=k+1 ÅfhXP2n+1
h=k+1 ÅfhZ

Åfkû

9
>>>=

>>>;
; (k = 2i; i = 1; ÅÅÅ; n)

(14)

Thus, the vector related to the nodal force acting on the i-th
link at t+Δ t is successively calculated using the above 
vector. 

fPigt+Å t = fPigt + fÅpkg; (k = 2i)                       (15) 

The successive values of the n-link joint torque are then 
obtained by substituting (15) into (6). Newmark's b method 

(d=1/2) is used as the time integration scheme to solve the 
incremental kinematic equation.  

IV. NUMERICAL EXAMPLES 

First, the proposed scheme using the FEM is applied to 
the joint torque calculation of an open-loop eight-link 
mechanism as an example, in order to confirm the accuracy 
of the calculated torque curves by comparing them with 
those obtained by the Newton-Euler method. Figs. 5(a) and 
5(b) show the torque curves obtained using both schemes 
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Fig. 5(a). Joint torque curves obtained by Newton-Euler method 
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Fig. 5(b). Joint torque curves obtained by FEM 
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Fig. 4. Target trajectory for open-loop link mechanism 
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when the target trajectory for the 1.0s-motion is given in the 
eight-link mechanism (length of each link: 20cm, weight: 
107.5g, center of gravity at midpoint) as shown in Fig. 4. 
Gravity is assumed to act vertically downward. Although 
the motion may produce various nonlinear forces such as 
the Coriolis force, the torque curves obtained by the FEM 
are in good agreement with those obtained by the 
Newton-Euler method. Evidently, the proposed scheme is 
capable of considering every component in the dynamics. 

Next, the proposed scheme is applied to the joint torque 
calculation of a closed-loop six-link mechanism. A simple 
target trajectory is given in the mechanism (length of each 
link: 50cm, weight: 268.75g, center of gravity at midpoint) 

as shown in Fig. 6, where a mass of 1.0kg is loaded at a 
passive joint on the lateral beam, driven by six active joints. 
The same trajectory is given in an operation time of 10.0s 
(case 1) and 1.0s (case 2) to compare the effect of nonlinear 
forces. The calculated joint torque curves are shown in Figs. 
7(a) and 7(b) for the two cases, respectively. The effect of 
nonlinear forces is negligible in case 1, and thus the initial 
torque agrees with the required torque at joints 3 and 6 to 
support the mass m and the link members. The torque values 
decrease in the minus direction as the mechanism tilts, to 
prevent the mechanism from collapsing. The torque values 
at the final stage also agree with the theoretical ones. On the 
other hand, the effect of nonlinear forces can be observed in 
case 2, where fluctuations in both initial torque values and 
amplitude of the torque curves are observed.

V. CONCLUDING REMARKS 

By deriving the nodal forces in parallel and converting 
them to the joint torque, the proposed scheme using the 
FEM can be used to calculate the inverse dynamics of the 
closed-loop as well as the open-loop link mechanisms 
without changing the basic numerical algorithm. This 
unified approach may achieve stability and smoothness in 
continuous motions of robotic architecture. Construction of 
the numerical algorithm for three-dimensional cases, and 
for combined cases with different system configuration is in 
progress. 
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Fig. 7(a). Obtained torque curves (case 1) 
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Fig. 6. Target trajectory for closed-loop link mechanism 
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