# 有限要素法に基づく3次元木骨組構造物の 弾塑性・破断解析手法の開発

Development of elasto-plastic and collapse analysis method for 3-D timber structures based on finite element method

## 伊藤 慎也<sup>1)</sup>大場 友暁<sup>2)</sup>大村 浩之<sup>3)</sup>磯部 大吾郎<sup>4)</sup> Shinya Ito, Tomoaki Ohba, Hiroyuki Omura and Daigoro Isobe

<sup>1)</sup>筑波大学大学院システム情報工学研究群(〒305-8573 茨城県つくば市天王台 1-1-1, E-mail: s2320834@u.tsukuba.ac.jp)
 <sup>2)</sup>筑波大学大学院システム情報工学研究群(〒305-8573 茨城県つくば市天王台 1-1-1, E-mail: s2320843@u.tsukuba.ac.jp)
 <sup>3)</sup>博(工)国立研究開発法人防災科学技術研究所(〒305-0006 茨城県つくば市天王台 3-1, E-mail: homura@bosai.go.jp)
 <sup>4</sup>)博(工)筑波大学システム情報系 教授(〒305-8573 茨城県つくば市天王台 1-1-1, E-mail: isobe@kz.tsukuba.ac.jp)

This paper introduces a novel simulation method for timber structures based on finite element method. The method is composed of the ASI-Gauss technique and a new elasto-plastic theory for a timber, enabling comprehensive elasto-plastic and collapse analysis in a three-dimensional space. The proposed elasto-plastic theory adjusts stiffness of a timber in accordance with the expansion of the plastic region. Using data from previous studies, it is confirmed that the method can simulate the behavior of timber structures with relatively high accuracy.

Key Words : Timber structure, Plastic region, Nonlinear structural analysis, ASI-Gauss technique

## 1. はじめに

近年,環境意識の高まりと共に,構造物に対しても 環境への負荷の低減が求められている.特に木造構造 物は,製造や加工に必要なエネルギーが小さく,炭素 固定作用を有しているとして注目を集めている.しか し,木造構造物は強度が比較的低く,特に自然災害が 頻発する日本においては設計段階での強度の評価が不 可欠である.このため,木造構造物の弾塑性・破断挙 動を解析可能なシミュレータが求められている.

一方,既存のシミュレータの多くは T. Nakagawa and M. Ohta, 2003 [1,2,3] の Extended Distinct Element Method (EDEM)を始めとする個別要素法に基づいて おり,解析モデル作成時に実験を伴う煩雑なパラメー タ同定作業が要求され,様々な木造構造物に対する迅 速な解析の実施が困難である.木材の材料特性に基づ いた解析が可能となれば,シミュレータの汎用性の向 上と,モデルの作成に要する労力の低減の両立が期待 できる.

このような背景から本研究では、3次元解析に対応し た木材はりの塑性化理論を構築し、構造物の破断解析 に適した有限要素法の一種である ASI-Gauss 法 [4] に 導入することで、有限要素法を用い、木材の材料特性 に基づいた3次元木骨組構造物の弾塑性・破断解析手 法を開発した。開発した手法に対しては、先行研究で 実施された解析や実験の再現解析を行い、妥当性を検 証した.

## 2. ASI-Gauss 法 [4]

ASI-Gauss 法は,線形チモシェンコはり要素を用いた 有限要素法の一種であり,次式(1)に示す増分型の仮想 仕事原理式に基づき定式化される.

$$\int_{-l_n/2}^{l_n/2} \{\delta \Delta_n \varepsilon\}^T \{\Delta_n \sigma\} dz - \{\delta \Delta_n u\}^T \{\Delta_n f\} = 0$$
(1)

各解析ステップでは,式(1)から得られる,次式(2) に示す増分型の運動方程式を解く.

$$[M]\{\ddot{u}\}_{t+\Delta t} + [C]\{\dot{u}\}_{t+\Delta t} + [K]\{\Delta u\} = \{F\}_{t+\Delta t} - \{R\}_t \quad (2)$$

ここで, [*M*], [*C*], [*K*] は全体質量行列,全体減衰行列, 全体剛性行列であり, {*u*}, {Δ*u*}, {*F*}, {*R*} は節点変位お よびその増分,外力ベクトル,内力ベクトルである.全 体剛性行列 [*K*] の算出は,3章で述べる塑性化理論に従 い行われる.また,得られた節点変位を用いて要素の 断面力を算出し,次ステップでの剛性低下や破断判定 に用いる.なお,4章で述べる要素解析では慣性項や減 衰項を無視し,5章で述べる木造家屋倒壞実験の再現解 析では減衰項を無視している.

ASI-Gauss 法の大きな特徴として,2つの隣接するは り要素で1つのサブセット要素を構成し,式(2)を構成 する際に用いる要素中の数値積分点および応力評価点 を,弾性解析時と塑性解析時で遷移させることが挙げ られる.これにより,高精度な解析を最小限の要素分 割数で行うことや,部材破断の容易な考慮が可能とな る.応力評価点位置rと数値積分点位置sは,はり要



図-1 弾性解析時における数値積分点と応力評価点



## 図-2 塑性解析時における数値積分点と応力評価点 (要素1右 端で塑性化が生じた場合)

素と剛体ばねモデルの物理的等価性に基づき導出され た次式 (3) により関係付けられる [5].

$$s = -r \tag{3}$$

上式を用いて,弾性解析時は図1に示すように,ガウス 積分点に相当する位置に応力評価点が配置されるよう に数値積分点を設定する.一方塑性解析時は,図2に 示すように,応力評価点が塑性化が判定された要素端 部に配置されるように片方の要素の数値積分点を遷移 させる.その際,もう片方の要素の応力評価点と数値 積分点は,線形チモシェンコはり要素で用いられる要 素中心に移される.なお本研究では,応力評価点や数 値積分点の遷移は塑性化開始時ではなく,部材破断判 定時に行う.

#### 3. 3次元弾塑性解析に対応した木材はりの塑性化理論

一般的な木材は図3に示すように、圧縮力に対して は弾性域から剛性低下を経て圧縮破壊に至る一方,引 張力に対しては剛性低下を経ずに引張破壊に至るとい う特徴を持つ. 岩崎ら[6]はこの特徴に基づき,1軸回 りの曲げモーメントを受ける木材はりに対して,はり の断面力から塑性域を算出することで塑性化による剛 性低下を表現する理論を提案した.しかし,3次元構 造解析では2軸回りのモーメントが作用することから, 岩崎らの理論を直接適用することは困難である.

本研究では岩崎らの理論を拡張し、2軸回りの曲げ モーメントを受ける木材はりに対し断面力から塑性域 を算出し剛性低下や破断判定を行う理論を構築した.本 理論における処理の流れは、次の通りである.

1. 断面力からはり要素両端でのひずみ分布を求め,応 力-ひずみ曲線を用いた塑性域の算出や,破断判定 を行う.



図-3 一般的な木材の応力-ひずみ曲線



図-4-a 正規化前 図-4-b 正規化後

図-4 木材断面の正規化

- 2. 要素両端での剛性行列を, 塑性域を除いた断面領 域に対して算出する.
- 3. 要素両端での剛性行列を平均し, 要素剛性行列を 算出する.

岩崎らは塑性域を除いた断面に対する剛性行列を要素 長にわたって積分することで要素剛性行列を算出した が、本研究では簡単のため要素両端での値を平均して 算出する.

各要素端 *i* (*i* = 1,2) における,ひずみ分布と塑性域 を求める手順,破断判定手順,および剛性行列算出手 順については,以下の節で詳述する.なお,説明に際 し次を仮定する.

- 1. 木材はりの断面は二軸対称な長方形断面とする.
- 2. はりの変形に伴う断面形状の変化は無視する.
- 3. 断面ははりの変形時も平面を保持し、ひずみ分布 は平面状に変化する.

## (1) ひずみ分布と塑性域の算出

まず簡単化のため,図 4-a に示す木材はりの断面を図 4-b に示すように 1×1 の正方形に正規化する.これに伴い,要素端 *i* での断面力 *M<sub>xi</sub>*, *M<sub>yi</sub>*, *N<sub>i</sub>* を次式 (4) で正規化する.

$$m_{xi} = \frac{|M_{xi}|}{bh^2}, \quad m_{yi} = \frac{|M_{yi}|}{b^2h}, \quad n_i = \frac{N_i}{bh}$$
 (4)

ここで, *b*, *h* は断面の幅および高さである. また, 正 規化後の断面では図 4-b に示すように, 右下で圧縮変 形, 左上で引張変形が生じる.

続いて,正規化後の断面におけるひずみ分布を次式

(5)で定義する.

$$\varepsilon_i(x, y) = a_i x + b_i y + c_i \tag{5}$$

式中の $a_i, b_i, c_i$ がひずみ分布を決定する係数である. 断面力とひずみ分布は、木材の応力-ひずみ曲線 $\sigma = \sigma(\varepsilon)$ を用い次式(6)で関連付けられる.

$$\begin{cases} m_{xi} \\ m_{yi} \\ n_i \end{cases} = \int_A \sigma(\varepsilon_i) \cdot \begin{cases} y - 1/2 \\ -x + 1/2 \\ 1 \end{cases} dA = \{ P(a_i, b_i, c_i) \} \quad (6)$$

ここで, *A* は正規化後の断面領域を表す.式 (6) は *a<sub>i</sub>*, *b<sub>i</sub>*, *c<sub>i</sub>* に関する非線形方程式であるため,本研究 では Newton-Raphson 法により求解演算を行う.

求解の結果得られた  $a_i, b_i, c_i$ , すなわちひずみ分布 を用い, 圧縮ひずみの大きさが一定値  $\varepsilon_c$  以上の領域は 塑性域と判定する.

## (2) 破断判定

図 4-b に示す正規化された断面おいて, (x,y) = (1,0)の点では圧縮ひずみ, (0,1)の点では引張ひずみが最大となる.したがって,  $\varepsilon_i(1,0)$ が圧縮破壊ひずみに達した際に圧縮破断,  $\varepsilon_i(0,1)$ が引張破壊ひずみに達した際に引張破断を判定する.

### (3) 剛性行列の算出

本研究では塑性域は欠損したものとみなし,まず塑 性域を除いた断面領域  $\tilde{A}_i$  に対する図心  $\tilde{c}_{xi}$ ,  $\tilde{c}_{yi}$  および x, y 軸回りの断面 2 次モーメント  $\tilde{I}_{xi}$ ,  $\tilde{I}_{yi}$  を次式 (7) で 算出する.

$$\tilde{c}_{xi} = \frac{1}{\tilde{S}_i} \int_{\tilde{A}_i} x d\tilde{A}_i \quad \tilde{c}_{yi} = \frac{1}{\tilde{S}_i} \int_{\tilde{A}_i} y d\tilde{A}_i$$

$$\tilde{I}_{xi} = bh^3 \int_{\tilde{A}_i} (y - \tilde{c}_{yi})^2 d\tilde{A}_i \quad \tilde{I}_{yi} = b^3 h \int_{\tilde{A}_i} (x - \tilde{c}_{xi})^2 d\tilde{A}_i$$
(7)

ここで,  $\tilde{S}_i$  は  $\tilde{A}_i$  の面積である. 続いて, 算出された  $\tilde{S}_i$ ,  $\tilde{I}_{xi}$ ,  $\tilde{I}_{yi}$ を用い, 要素端での剛性行列 [ $\tilde{D}_i$ ] を次式 (8) により求める.

$$[\tilde{D}_i] = \begin{bmatrix} E\tilde{I}_{xi} & & & \\ & E\tilde{I}_{yi} & & 0 & \\ & & E\tilde{S}_i & & \\ & & & GK & \\ 0 & & & \alpha_x G\tilde{S}_i & \\ & & & & & \alpha_y G\tilde{S}_i \end{bmatrix}$$
(8)

ここで, E, G, K,  $\alpha_x$ ,  $\alpha_y$  は各々弾性係数, せん断弾 性係数, ねじり定数, x, y 軸方向のせん断修正係数で ある.

## 4. 要素解析による検証

本研究では開発した手法を用いて,まず岩崎らの解析[6]を再現し,単純化した剛性行列の算出方法の妥当 性を検証した.続いて Song らが実施した実験[7]の再 現解析を行い,2軸回りの曲げモーメントを受ける木材 はりの挙動の解析精度を検証した.







図-6 bi-linear 型の応力-ひずみ曲線

表-1 木材の材料特性値 [8]

| 弾性係数 E [N/mm <sup>2</sup> ]                | 9560 |
|--------------------------------------------|------|
| 圧縮強度 $\sigma_c$ [N/mm <sup>2</sup> ]       | 47.5 |
| 引張強度 $\sigma_t$ [N/mm <sup>2</sup> ]       | 81.8 |
| ひずみ比 $n_c = \varepsilon_u / \varepsilon_c$ | 3.0  |

## (1) 岩崎らの解析 [6] の再現

解析対象は図 5 に示すコの字はりモデルであり,部 材断面は 100×100 [mm],スパンは 1000 [mm],支持上 柱部材の長さは 100 [mm] である.ASI-Gauss 法に基づ き 1 部材 2 要素でモデルを分割した.

木材の応力-ひずみ曲線には図6に示す bi-linear 型の モデルを,材料特性には表1に示す,文献[8]より得 られた値を用いた.これらは文献[6]で使用されたもの と同一である.

図7に解析から得られたスパン中央の荷重-たわみ曲 線を示す.破断は圧縮側で生じ,文献[6]と同様の判定 となった.図より,破断判定点位置に若干の差異が見ら れるものの,塑性化開始点位置や曲線形状は文献[6]の 結果とほぼ一致しており,剛性行列の算出方法の単純 化が解析結果に与える影響は小さいことが確認された.

### (2) Song らの2軸偏心圧縮試験[7]の再現解析

文献 [7] では様々な試験体長や偏心条件にによる試験 が実施されたが、本研究では X, Y 軸方向に 20 [mm] 偏 心させた実験を再現する. 図8 に解析モデルを示す. モ デルは1部材2要素で分割し、断面寸法は 89×39 [mm], スパンは 2134 [mm] である.

木材の応力-ひずみ曲線には文献 [7] で提案された次



図-7 スパン中央の荷重-たわみ曲線



図-8 解析モデルの概観

| 衣-2 木材の材料特性値[/]                      |         |
|--------------------------------------|---------|
| 弾性係数 E [N/mm <sup>2</sup> ]          | 9868    |
| 圧縮強度 $\sigma_c$ [N/mm <sup>2</sup> ] | 23.15   |
| 引張強度 $\sigma_t$ [N/mm <sup>2</sup> ] | 30.00   |
| 塑性化後の弾性係数 $E_d$ [N/mm <sup>2</sup> ] | -830.8  |
| 圧縮塑性化ひずみ $\varepsilon_p$             | -0.0037 |

式 (9) を用いた.式中の材料特性値を表 2 に,曲線の概 形を図 9 に示す.



ここで, rは $r = \varepsilon_p E / \sigma_c$ と定義され, 圧縮時の非線形 性を表す.

図 10 および図 11 に実験および解析から得られたス パン中央での荷重-たわみ曲線を示す.実験では木材の ばらつきを考慮するため試験体を 30 体用いており,図 中の点線はそれらの上限および下限を表す.図 10 およ び図 11 より,解析結果は弱軸方向(X 軸方向)の実験結 果を良好に再現している.一方,強軸方向(Y 軸方向) の再現性はやや低いことが読み取れるが,原因として 実験時の外乱やモデル化誤差等が考えられる.しかし, 破断強度やはりの変形に大きな影響を与える弱軸方向 の挙動の再現性が高いことから,開発した手法は 2 軸 回りのモーメントが作用する木材はりの挙動を,比較 的高精度で解析可能と言える.



図-9 文献 [7] で提案された応力-ひずみ曲線



図-10 スパン中央 X 軸方向の荷重-たわみ曲線



図-11 スパン中央 Y 軸方向の荷重-たわみ曲線

#### 5. 木造家屋倒壊実験の再現解析

本研究では、開発した解析手法を地震動を受ける木 造家屋倒壊実験の再現解析に適用し、有限要素法を用 いた、材料特性に基づく木造構造物の弾塑性・破断解 析の実現可能性を検証した.

## (1) 復元力特性および破断判定

本再現解析では、地震動に対する挙動の解析精度向 上のため、はり要素の剛性低下処理に図 12 に示す 復 元力特性を組み込んだ.弾塑性域では構築した木材は りの塑性化理論に従い剛性低下を行うが、応力が最大 強度に達した後は全断面降伏が生じ、塑性流れ則に従 うと仮定する.また、除荷時は全断面降伏直前の剛性 を用いる.終局状態は終局変形に達した際の靭性破壊 および引張強度に達した際の脆性破壊を考慮するため, 次式 (10) により判定する.

$$\theta_{zx} \ge \theta_{zx}^c \lor \theta_{yz} \ge \theta_{yz}^c \lor \sigma \ge \sigma_t \tag{10}$$

ここで、 $\theta_{zx}, \theta_{yz}$ は要素座標系 x, y軸方向の変形角、 $\theta_{zx}^{c}, \theta_{yz}^{c}$ は終局変形角、 $\sigma, \sigma_{t}$ は軸方向応力と引張強度である.

#### (2) 木造家屋倒壊実験の概要

対象とする実験は、2005年に実大三次元震動破壊実 験施設(E-ディフェンス)で実施された既存木造家屋倒 壊実験[9]である.実験では既存不適格の木造家屋を震 動台上に移築し,JR 鷹取波100%による加震が実施さ れた.なお,試験体として無補強試験体及び耐震補強 試験体の2棟が用いられたが,本研究では無補強試験 体のみを比較対象とする.

図 13 に家屋 (無補強試験体)の概観を示す. 重量は 1 階 101.3 [kN], 2 階 133.9 [kN], 屋根 60.62 [kN], 総重 量 295.8 [kN] であり, 1 次固有周期は X 軸方向が 0.137 [s], Y 軸方向が 0.222 [s] である.

### (3) 解析モデル

図 14 に解析モデルを示す. モデルは全部材を 2 つの はり要素で分割した.

接合部および壁材に関しては、本解析では陽的なモ デル化は行わず、部材同士は剛接合されているものと し、壁材と柱は一体のはり要素として扱った.そして柱 部材の断面定数を、予備実験で用いられた構造要素の 骨格曲線と整合するように決定することで、接合部お よび壁材の特性を簡易的に考慮した.また1階と2階 の梁および屋根に該当する要素の密度は、解析モデル の重量が家屋の実測値と一致するように決定した.

部材の断面寸法は, 柱を 10×10 [cm], 梁を 10×15 [cm] もしくは 10×20 [cm], 筋交いを 3×9 [cm], その他の部 材を全て 10×15 [cm] とした. モデルでは 3 種類の木材 の特性を考慮したが, 全て bi-linear 型の応力-ひずみ曲 線を採用し, 各々の材料特性値としては表 3 に示す, 文 献 [10,11] より得られた値を用いた.

弾性自由振動解析で算出された解析モデルの1次固 有周期はX軸方向が0.347 [s], Y軸方向が0.523 [s] で ある. X, Y軸方向ともに実測値と比べ大きいが,外壁 および内壁の初期剛性を過小評価していることが原因 と考えられる,しかし,地震動下では早期に剛性低下が 生じるため,倒壊挙動への影響は小さいと考えられる.

## (4) 解析条件

解析の入力波形には,震動台上で観測された加速度 時刻歴を用いた.また,塑性域の拡大に伴う剛性低下 の影響を調べるため,塑性化開始と同時に全断面降伏 とする解析も同様の条件にて実施した.

## (5) 解析結果

図 15 に、構築した塑性化理論を用いて実施した解析 における可視化結果と、実験で観測された家屋の挙動 を示す. コンターは圧縮強度で正規化した圧縮応力を 表し、破断した要素は可視化対象から除外している.ま









図-13 木造家屋の概観

**図-14 解析モデルの概観** 

|                           | ヒノキ   | カラマツ  | ベイツガ  |  |
|---------------------------|-------|-------|-------|--|
| 弾性係数 [N/mm <sup>2</sup> ] | 8800  | 9800  | 10300 |  |
| ポアソン比                     | 0.4   | 0.4   | 0.4   |  |
| 密度 [kg/m <sup>3</sup> ]   | 440   | 500   | 480   |  |
| 圧縮強度 [N/mm <sup>2</sup> ] | 39.0  | 44.0  | 40.0  |  |
| 引張強度 [N/mm <sup>2</sup> ] | 117.0 | 132.0 | 120.0 |  |
| 終局変形角 [rad]               | 0.16  | 0.16  | 0.16  |  |

表-3 木材の材料特性値 [10,11]

た、図16に解析および実験における1階のY軸方向層 間変位時刻歴を示す。可視化結果および層間変位時刻 歴より,解析では 5.5 [s] 付近で家屋が Y 軸正方向へ大 きく傾き、その後一度変形が減少するものの7[s]付近 で1階が倒壊を始め、7.6 [s] 付近で1階の倒壊が完了 すると同時に2階の倒壊が始まり, 8.0 [s] には家屋の 倒壊が完了する様子が確認された.一方,実験結果と 比較すると、 倒壊開始時刻や倒壊方向は一致している ものの、倒壊直前に大きく傾く方向や、1階倒壊後の2 階の挙動に差異が見られた. このような差異の原因と しては、解析モデルにおいて接合部や壁の特性の考慮 が不十分であることが考えられる.しかし、全体的な 倒壊挙動は概ね一致しており、一部のモデル定数を人 為的に調整したものの、有限要素法を用いた、材料特 性に基づく木造構造物の弾塑性・破断解析の実現可能 性が示されたと言える.

また,塑性域の拡大を考慮しない解析との比較から, 塑性域拡大に伴う剛性低下の考慮による解析精度の向 上が確認でき,有限要素法に基づく木造構造物の弾塑 性・破断解析における,塑性域拡大の考慮の重要性が 示唆された.



図-15 解析の可視化結果 (左)と倒壊実験の様子(右)



図-16 1 階の Y 軸方向層間変位時刻歴

## 6. 結論

本研究では、3次元弾塑性解析に対応した木材はりの 塑性化理論を構築し、ASI-Gauss 法に導入することで、 3次元木骨組構造物の弾塑性・破断解析を木材の材料特 性に基づき行う手法を開発した.

開発した手法に対しては、まず単純なモデルを用い た解析を実施し、先行研究で得られた結果との比較を 通して、剛性低下手順の簡単化による影響は小さく、木 材はりの3次元的な変形・破断挙動を妥当な精度で解析 可能であることが確認された.続いて木造家屋倒壊実 験の再現解析を実施し、家屋の挙動がある程度再現さ たことから,材料特性に基づく木造構造物の弾塑性・破 断解析の実現可能性が示された.

今後は接合部や壁のモデルを組み込み,解析精度の 向上を図る予定である.

### 参考文献

- T. Nakagawa and M. Ohta: Collapsing process simulations of timber structures under dynamic loading I: simulations of two-story frame models, *J. Wood Sci*, Vol.49, pp.392–397, 2003.
- [2] T. Nakagawa and M. Ohta: Collapsing process simulations of timber structures under dynamic loading II: simplification and quantification of the calculating method, *J. Wood Sci*, Vol.49, pp.499–504, 2003.
- [3] T. Nakagawa, M. Ohta, T. Tsuchimoto and N. Kawai: Collapsing process simulations of timber structures under dynamic loading III: numerical simulations of real-size wooden houses, *J. Wood Sci*, Vol.56, pp.284–292, 2010.
- [4] D. Isobe: Progressive Collapse Analysis of Structures: Numerical Codes and Applications, Elsevier, eBook ISBN: 9780128130421, Paperback ISBN: 9780128129753, 2018.
- [5] 都井裕: 骨組構造および回転対称シェル構造の有限要素解析における ShiftedIntegration 法について, 日本造船学会論文集, No.168, pp.357-369, 1990.
- [6] 岩崎正二,佐々木寛幸,山本亮,宮本裕:塑性域の広がりを考慮した平面木骨組構造物の弾塑性解析,第3回木橋技術に関するシンポジウム論文報告書,pp.95-102,2004.
- [7] Xiaobin Song, Frank Lam: Laterally braced wood beam-columns subjected to biaxial eccentric loading, *Computers & structures*, Vol.87, No.17-18, pp.1058-1066, 2009.
- [8] 山本亮,佐藤和也,宮本裕,岩崎正二,出戸秀明, 五郎丸英博:静的破壊試験による集成材ラミナの 材料強度特性について,土木学会東北支部技術研 究発表会講演会概要,I-18, pp36-37,2000.
- [9] 槌本敬大:移築した既存木造住宅の耐震補強・無 補強実験,建築技術, No.675, pp.158–161, 2006.
- [10] 村田功二,棚橋秀光: 圧縮試験による木材のヤング 率とポアソン比の測定,材料, Vol.59, No.4, pp.285-290, 2010.
- [11] H. Yoshihara, Y. Kubojima, K. Nagaoka, M. Ohta: Measurement of the shear modulus of wood by static bending tests, J. Wood Sci, Vol.44, pp.15-20, 1998.