Impact Analysis of Space Structure due to Collision with Hypervelocity Space Debris by using ASI-FEM

Daigoro ISOBE*, Masaomi MORISHITA**

* Institute of Engineering Mechanics, University of Tsukuba ** Yokohama Rubber Co.

Prediction of damage against space debris collisions

Numerical approach

Strong non-linearity and discontinuity

Adaptively Shifted Integration (ASI) technique

- Very clear physical meanings
 comparing strain energy approximations
 FEM model RBSM(Rigid-Bodies Spring Model)
- Simplicity easy to implement into FEM codes

 Low computational cost accurate solutions by minimum number of elements

- X Numerical integration point
- Rotational and shear spring connecting rigid bars (plastic hinge)

Fig.1 Linear Timoshenko beam element and its physical equivalent

Relation between the location of a numerical integration point and a plastic hinge

$$s_1 = -r_1 \ or \ r_1 = -s_1$$

where

s1:position of a numerical integration point

r1:position of a plastic hinge or a fractured section

Incremental stiffness matrix and initial stress matrix

Elastically deformed element

$$\begin{bmatrix} {}^{n}\bar{K}_{L} \end{bmatrix} = \int_{n_{l}} {}^{u}T]^{T} \cdot {}^{0}T]^{T} {}^{n}\bar{B}_{L}(0)]^{t} [D^{e}(0)] {}^{n}\bar{B}_{L}(0)]^{0}T \cdot {}^{u}T]dl$$

$$\begin{bmatrix} {}^{n}\bar{K}_{NL} \end{bmatrix} = \int_{n_{l}} {}^{u}T]^{T} \cdot {}^{0}T]^{T} {}^{n}\bar{G}(0)]^{t} {}^{n}\bar{S}(0)] {}^{n}\bar{G}(0)]^{0}T \cdot {}^{u}T]dl$$

Element with a plastic hinge at its left end

$$\begin{bmatrix} {}^{n}\bar{K}_{L} \end{bmatrix} = \int_{n_{l}} {}^{u}T \end{bmatrix}^{T} \cdot {}^{0}T \end{bmatrix}^{T} {}^{n}\bar{B}_{L}(1)]^{t} [D^{p}(-1)] {}^{n}\bar{B}_{L}(1)]^{0}T \cdot {}^{u}T]dl$$

$$\begin{bmatrix} {}^{n}\bar{K}_{NL} \end{bmatrix} = \int_{n_{l}} {}^{u}T]^{T} \cdot {}^{0}T]^{T} {}^{n}\bar{G}(1)]^{t} {}^{n}\bar{S}(-1)] {}^{n}\bar{G}(1)]^{0}T \cdot {}^{u}T]dl$$

Internal force vector (elastic element)

$${n \choose n} = \int_{n} [{}^{0}T]^{T} \cdot [{}^{u}T]^{T} \cdot [{}^{n}\bar{B}_{L}(0)]^{T} \cdot {n \over n} \bar{R}(0) dl$$

Released force vector (fully-plastic or fractured element)

$${n \choose n} = \int_{n} [{}^{0}T]^{T} \cdot [{}^{u}T]^{T} \cdot [{}^{n}\bar{B}_{L}(1)]^{T} \cdot {n \over n} \bar{R}(-1) dl$$

Criteria for member fracture

Fig. Member fracture in the ASI technique

$$\left(\frac{\kappa_x}{\kappa_{fx}}\right) - 1 \ge 0, \quad \left(\frac{\kappa_y}{\kappa_{fy}}\right) - 1 \ge 0,$$

$$\left(\frac{\varepsilon_z}{\varepsilon_{fz}}\right) - 1 \ge 0$$

$$\left(\frac{\varepsilon_z}{\varepsilon_{fz}}\right) - 1 \ge 0$$

 $\kappa_{fx}, \, \kappa_{fy}$: critical curvature around

 \mathbf{x} - and \mathbf{y} -axes ε_{fz} : critical strain

- X Numerical integration point
- Rotational and shear springs connecting rigid bars

Conditions for the elements in contact algorithm

Four nodes on a same plane from the initial stage

$$f(x,y,z) \equiv \{(y_{i1}-y_{f2})(z_{i2}-z_{f2})-(y_{i2}-y_{f2})(z_{i1}-z_{f2})\}(x_{f1}-x_{f2}) + \{(x_{i2}-x_{f2})(z_{i1}-z_{f2})-(x_{i1}-x_{f2})(z_{i2}-z_{f2})\}(y_{f1}-y_{f2}) + \{(x_{i1}-x_{f2})(y_{i2}-y_{f2})-(x_{i2}-x_{f2})(y_{i1}-y_{f2})\}(z_{f1}-z_{f2}) \}$$

and existing in a specific distance

$$|\overline{A_1B_{i1}}| + |\overline{A_1B_{i2}}| \le L_i, \quad |\overline{A_2B_{i1}}| + |\overline{A_2B_{i2}}| \le L_i$$

$$f(x, y, z) \le 5.0 \times 10^6$$

and existing in a specific distance

$$|\overline{A_1B_{i1}}| + |\overline{A_1B_{i2}}| + |\overline{A_2B_{i1}}| + |\overline{A_2B_{i2}}| \le 1.8(L_f + L_i)$$

= 0

Fig.2a Contact conditions for a fractured element

Binding conditions for the gap elements

- Four gap elements between the two elements in contact
- Same material properties with other elements
- Stiffness decreases after certain time steps

 $(1.0 \times 10^{-3} \text{ sec})$

Fig.2b Gap elements in contact algorithm

Fig. Debris impact analysis of a space module unit (5 km/sec)

Debris impact analysis of ISS

Debris

mass: 10 kg

velocity: 5 km/sec

Critical values for member fracture

$$\kappa_{fx} = \kappa_{fy} = 1.0 \times 10^{-3}$$
$$\varepsilon_{fz} = 3.0 \times 10^{-1}$$

Fig.3 Analyzed model of ISS

Fig.4 Hypervelocity debris impact analysis of ISS

Implicit scheme (Newmark's β method) Incremental time: $\Delta t = 0.4 \times 10^{-4} \text{ sec}$

Concluding remarks

ASI technique

Debris impact analysis

Practical expression of the damage process

Strong nonlinear (discontinuous) problems easily analyzed by FEM

•• may be applied to Structural design process of space structures