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Abstract

The Adaptively Shifted Integration (ASI) technique, which produces the highest computational e�ciency in the
®nite element analyses of framed structures including static and dynamic collapse problems, is applied to
structurally discontinuous problems of reinforced concrete building frames. A new numerical scheme based on the

updated Lagrangian formulation (ULF) adaptation of the ASI technique is developed, by modeling the fracture of a
section by a plastic hinge located at the exact position with a simultaneous release of resultant forces in the element.
By using the algorithms described in this paper, the analyses became possible even by the conventional

displacement-based ®nite element codes, and su�ciently reliable solutions for practical use have been obtained in
the explosive demolition and seismic damage analyses of a ®ve storied, ®ve span RC building frame. The present
technique can be easily implemented with minimum e�ort into the existing ®nite element codes utilizing the linear

Timoshenko beam element. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The technology used in the demolition of old worn-

out buildings has always been of major interest and

challenge in civil engineering. To meet the heavy

demand for demolition work, a controlled explosion

technique using high explosives has been developed in

recent years as conventional demolition techniques

using a hydraulic concrete crusher, a concrete cutter or

a non-explosive demolition agent are lengthy and

costly. In Japan, the explosive demolition technique

has recently been used in a few cases, such as the

demolition of international exposition buildings in Tsu-

kuba and an unused hotel in Kyoto. The explosive

demolition technique increases work e�ciency but

poses a high risk of damaging neighboring buildings,

especially in urban areas. Therefore, a test of the

assumptions using computational analysis made in

devising the controlled explosive demolition, has

become essential to ensure the success of this method.

The Great Hanshin-Awaji Earthquake, which

occurred in January 1995, caused severe damage over

a large area. As a result of this earthquake the struc-

tural design guidelines for buildings, especially against

vertical seismic waves, were thoroughly reviewed and

due consideration was given to the development of a

convenient technique to analyze collapse modes of

structural members under a three-directional exci-

tation.
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So far, there are few numerical examples of compu-

tational schemes, such as the Distinct Element Method
(DEM) [1] or the Discontinuous Deformation Analysis
(DDA) [2], applied to demolition or seismic damage

analyses [3±8]. The commonly used ®nite element
codes can only be used after making complicated
modi®cations to simulate dynamic collapse problems

which contain strong nonlinearities and discontinuities,
such as fractures occurring in ¯exural damage or shear

damage in reinforced concrete members. The main
purpose of this paper, is to devise a new algorithm ap-
plicable to these types of discontinuous problems by

using the ®nite element method.
As shown in previous papers [9±12], the highest

computational e�ciency in ®nite element analyses of
framed structures including the geometrically non-
linear, elasto-plastic analysis as well as the geometri-

cally linear, plastic collapse analysis and the dynamic
collapse analysis, has been achieved by using the
Adaptively Shifted Integration (ASI) technique. In this

paper, the ASI technique and the linear Timoshenko
beam element, which can be easily implemented with a

minimum e�ort into existing ®nite element codes, are
extended and applied to problems of structural discon-
tinuities in explosive demolition analysis and seismic

damage analysis.
In this technique the numerical integration points in

an elastically deformed beam element are placed at the

optimal points for linear analysis (midpoint in the lin-
ear Timoshenko beam and Gaussian integration points

in the cubic beam element) and are immediately shifted
after the occurrence of a fully plastic section in the el-
ement, using previously established relations between

the locations of numerical integration points and those
of plastic hinges [13], to form a plastic hinge exactly at
the position of the fully plastic section. In this manner

this technique produces a higher computational accu-
racy with fewer elements than conventional ®nite el-

ement methods. An explosion or a fracture is
represented in this paper by releasing the resultant
forces in an element immediately after a plastic hinge

is located at the section. Only the resultant forces are
assumed as the release forces reacting on the element
and thus, there are no impact phenomena assumed in

the demolition process. With the proposed technique
problems associated with modeling structural disconti-

nuities, such as those mentioned above, can be easily
tackled even by conventional displacement-based ®nite
element codes. More details about this technique are

given in subsequent sections of this paper.
Typically, the total Lagrangian formulation (here-

after abbreviated as TLF) and the updated Lagrangian
formulation (ULF) [14] are used in incremental non-
linear structural analyses. As the occurrence of extre-

mely large rotations and strains is anticipated in
dynamic collapse analyses, the ULF is used in this

paper. In order to maintain high computational e�-
ciency, an explicit time integration scheme using the

central di�erence method is chosen for explosive demo-
lition analysis, so as to model the high frequency re-
sponse better. On the other hand, the implicit time

integration scheme using Newmark's b method is cho-
sen for seismic damage analysis, as this scheme is bet-
ter suited for modeling low frequency response. Also, a

distributed mass matrix is used in the implicit code to
reduce response errors due to a rough ®nite element
subdivision.

In Section 2, the explicit nonlinear code and the im-
plicit nonlinear code based on the ULF are explained.
In Section 3, the ASI algorithm for dynamic collapse
analyses is described. The results of applying this

model to explosive demolition analysis and seismic
damage analysis of a ®ve storied, ®ve span reinforced
concrete building frame are detailed in Section 4. Sec-

tion 5 contains concluding remarks.

2. Time integration schemes based on the ULF

In this section, an explicit time integration scheme
based on the ULF applied in explosion demolition
analyses and an implicit time integration scheme based

on the ULF applied in seismic damage analyses, are
described.

2.1. Relations between generalized strain increments and

nodal displacement increments

The relations between the generalized strain incre-
ments and the nodal displacement increments of a lin-

ear Timoshenko beam element at incremental step n,
are expressed as

8>>>>>>>>><>>>>>>>>>:

Dn�e1
Dn�e2
Dn�e3
Dn�e4
Dn�e5
Dn�e6

9>>>>>>>>>=>>>>>>>>>;
�

8>>>>>>>>>>><>>>>>>>>>>>:

ÿ
Dn

�yxJ ÿ Dn
�yxI
�
=nl�

Dn
�yyJ ÿ Dn

�yyI
�
=nl

�Dn �wJ � ÿ Dn �wI=
nlÿ

Dn
�yzJ ÿ Dn

�yzI
�
=nl

�Dn �uJ ÿ Dn �uI �=nlÿ Dn
�yyI:�1ÿ s�=2ÿ Dn

�yyJ:�1� s�=2
�Dn �vJ ÿ Dn �vI �=nl� Dn
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�yxJ:�1� s�=2
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Here, it should be noted that the nodal displacement
increments are based on the elemental coordinate at

incremental step n. The element length nl calculated at
incremental step n is used to evaluate the generalized
strain increments, and the strain increments are equal

to the updated Green strain increments.
The generalized strain increment vector and the

nodal displacement increment vector are expressed as�
Dn�e

	 � �nn �BL

�
� �Dn �u

	 �2�

�
Dn �u

	 � �uT� � �0T� � fDug �3�

where

fDugT� �DuI,DvI,DwI,DyxI,DyyI,DyzI,DuJ,DvJ,

DwJ,DyxJ,DyyJ,DyzJ
� �4�

�0T � and �uT � in Eq. (3) are the transformation matrix

from global coordinates to the initial elemental coordi-
nates, and the transformation matrix from the initial
elemental coordinates to elemental coordinates at step

n, respectively. In this study �uT � is calculated by suc-
cessive iteration and is expressed as follows:

�uT� � �nT� � �nÿ1T� � �nÿ2T� � � � �3T� � �2T� � �1T� �5�
where �nT � is the transformation matrix from elemen-
tal coordinates at step �nÿ 1� to elemental coordinates
at step n. The matrix �nT � is calculated as follows:

�nT� �

2664
nT � 0 0 0
0 nT � 0 0
0 0 nT � 0
0 0 0 nT �

3775 �6�

where

�nT � � � �nT g � �
�
nT b

�
� �nT a �

�
24 cos�ng� sin�ng� 0
ÿsin�ng� cos�ng� 0
0 0 1

35

�

264 cos
ÿ
nb
�

0 ÿsin
ÿ
nb
�

0 1 0
sin
ÿ
nb
�

0 cos
ÿ
nb
�
375

�
24 1 0 0
0 cos�na� ÿsin�na�
0 sin�na� cos�na�

35 �7�

By de®ning the nodal displacement increments between
step �nÿ 1� and n as Dnÿ1 �uI,Dnÿ1vI,Dnÿ1wI, . . .Dnÿ1 �yxJ,

Dnÿ1 �yyJ and Dnÿ1 �yzJ respectively, cos�na�, cos�nb� and
ng in Eq. (7) can be calculated as follows:

cos�na� � �
nÿ1l� �Dnÿ1 �wJ ÿ Dnÿ1 �wI �

	h�
nÿ1l� �Dnÿ1 �wJ ÿ Dnÿ1 �wI �

	2��Dnÿ1 �vJ ÿ Dnÿ1 �uI �2
i1=2
�8�

cos
ÿ
nb
� � �

nÿ1l� �Dnÿ1 �wJ ÿ Dnÿ1 �wI �
	h�

nÿ1l� �Dnÿ1 �wJ ÿ Dnÿ1 �wI �
	2��Dnÿ1 �uJ ÿ Dnÿ1 �uI �2

i1=2
�9�

ng �
ÿ
Dnÿ1 �yzI � Dnÿ1 �yzJ

�
=2 �10�

where nÿ1l is the element length at step �nÿ 1).

2.2. Relations between resultant force increments and
generalized strain increments

The relation between the resultant force increment

vector and the generalized strain increment vector of a
linear Timoshenko beam element is expressed as�
Dn

�R
	
� �D� � �Dn�e

	 �11�

where [D ] is the stress±strain matrix. For an elastic el-

ement [D ] is given as

�D� � �De �

�

26666664
EIx 0 0 0 0 0
0 EIy 0 0 0 0
0 0 EA 0 0 0
0 0 0 GK 0 0
0 0 0 0 axGA 0
0 0 0 0 0 ayGA

37777775 �12�

where E,G,A,K,Ix, Iy, ax and ay are Young's modulus,
shear modulus, cross-sectional area, Saint-Venant's
torsional coe�cient, the moments of area inertia about
x and y axes, and shear correction factors in the x and

y axes, respectively. When the element becomes plastic
the stress±strain matrix [D ] can be expressed as

�D� � �D p � � �De �

ÿ �D
e � �

�
@ f=@ �R

	
�
�
@ f=@ �R

�
� �De ��

@ f=@ �R
�
� �De � �

�
@ f=@ �R

	 �13�

where f is the plastic potential, which is given as
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f �
 

�R1

Mx0
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�
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!2

�
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!2

�
 

�R4

Mz0

!2

ÿ1 �14�

where �R1, �R2, �R3 and �R4 are associated with the two
components of bending moment, axial force and tor-

sional moment, respectively. The e�ect of shear forces
on the yield condition has been neglected in this study.
The subscript `0' indicates a fully plastic value under
the condition when each component of the resultant

forces acts independently on the cross section of the
member.
The strain vector and the stress vector at step �n�

1� can be obtained by transforming the updated
Kirchho� stress increment vector to the Jaumann
di�erential form vector, which is expressed as follows:�
n�1
n �e

	 � �nn�e
	� �Dn�e

	 �15�

�
D �R

J
	
� �n�1A�

�
Dn

�R
	

�16�

�
n�1
n

�R
	 � � n

n
�R
	� �D �R

J
	

�17�

The transformation matrix �n�1A� is expressed as

�n�1A� �26666666664

n�1T �11
n�1T �12 0 n�1T �13 0 0

n�1T �21
n�1T �22 0 n�1T �23 0 0

0 0 n�1T �33 0 n�1T �31
n�1T �32

n�1T �31
n�1T �32 0 n�1T �33 0 0

0 0 n�1T �13 0 n�1T �11
n�1T �12

0 0 n�1T �23 0 n�1T �21
n�1T �22

37777777775
�18�

where n�1T �ij is the �i,j� term of the matrix �n�1T �� in
Eq. (7).

2.3. Explicit time integration scheme using central

di�erence method

Generally, an explicit time integration scheme is
used when numerical models are controlled by a high

frequency response. Therefore, the explicit code is cho-
sen in explosive demolition analysis, in order to main-
tain high computational e�ciency. In this section, the
explicit code used in the analysis, is described.

The dynamic equilibrium equation at t � tn can be
formulated as follows:

�M�fn �ug � fnEg ÿ �nnF	 �19�

where [M ], fn �ug, fnE g and n
nF are mass matrix, accel-

eration vector at step n, nodal external force vector at
step n and internal force vector at step n, respectively.

The lumped mass matrix [M ] used in the explicit
code is given by

�M� �

rl
2

2666666666666666666666666666666664

A

A

A

Al 2

12
0

Al 2

12

Iz

A

A

0 A

Al 2

12

Al 2

12

Iz

3777777777777777777777777777777775
�20�

where r, A, l, and Iz are density of the member, cross-

sectional area, length of the element and polar moment
of area inertia, respectively.
In the present code, the acceleration vector f �ug at

tÿ tn is approximated by the following central di�er-
ence equation:

fn �ug �
ÿ�

nÿ1u
	
ÿ 2fnug �

�
n�1u

	�
=�Dt�2 �21�

The substitution of Eq. (21) into Eq. (19) leads to

�M�
�
n�1u

	
� Dt2

ÿfnEg ÿ �nnF	�� �M�ÿ2fnug
ÿ
�
nÿ1u

	�
�22�

where

�
n
nF
	 � �

nl

�0T�T��uT�T�
h
n

n
�BL

iT

�
n
n

n
�R
o

dl �23�

Using the above equations, the displacement vector
fn�1ug can be calculated when the vectors fnug and
fnÿ1ug are known. However, in case of n � 0 in Eq.

(22), the vectors f0ug and fÿ1ug are required. The vec-
tor f0ug is given by the initial condition and the vector
fÿ1ug can be calculated by the following equation:

�ÿ1u	 � �0u	ÿ Dt
�
0 _u
	
� �Dt�

2

2

�
0 �u
	

�24�
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where the vector f0 _ug is the initial condition and f0 �ug is
calculated by placing t � 0 �n � 0� in Eq. (19).

It is known that the time increment Dt for the expli-
cit scheme has to satisfy the following condition,
known as Courant's stability condition:

Dt < Dtcr � lmin

vL

�25�

where vL is longitudinal wave velocity in an elastic
solid, and lmin is length of the shortest element in the
structure. Although there is the possibility of an
increase in total computing time, the calculation time

at each incremental step is reduced, as the present code
requires no inverse matrices and attended processes.
This also leads to a reduced demand for computer

memory.

2.4. Implicit time integration scheme using Newmark's b
method

As an explicit code uses a lumped mass matrix
which is simpli®ed by lumping each element's mass at

each node of an element, the numerical error tends to
increase with time, in response analyses. Accordingly,
in the ASI technique, which requires less amount of el-

ement subdivision, the numerical error caused by the
use of lumped mass matrices is increased and becomes
apparent. Thus, a distributed mass matrix should be

used when numerical models are controlled by low fre-
quency response, in cases such as seismic damage
analysis. In this section, an implicit code implemented
with a distributed mass matrix, is explained.

The following equation is substituted into Eq. (19)
at t � tn�1 in the implicit code:n
n�1
n�1F

o
� �nnF	� hnn �K

i
Du �26�

and the following incremental sti�ness equation is eval-

uated:

�M�
�
n�1 �u

	
�
h
n

n
�K
i
fDug �

�
n�1E

	
ÿ �nnF	 �27�

By neglecting residual forces, an implicit code is
obtained by evaluating the following incremental kin-
ematic equation:

�M�fD �ug �
h
n

n
�K
i
fDug � 0 �28�

where �nn �K� is a sti�ness matrix at step n. The distribu-
ted mass matrix [M ] used in the implicit code is given
by

�M� �

rl
6

26666666666666666666666664

2A A

2A A 0

2A A

2Ix Ix

2Iy 0 Iy

2Iz Iz

A 2A

A 0 2A

A 2A

Ix 2Ix

0 Iy 2Iy

Iz 2Iz

37777777777777777777777775
�29�

where r, A, l, Ix, Iy and Iz are density of the member,
cross-sectional area, length of element, moments of

area inertia about x and y axes and polar moment of
area inertia, respectively.
In this paper the incremental kinematic equation for

a structure under excitation at ®xed points is as fol-
lows:

�M1 �fD �ug � �M2 �
�
D �ub

	� hnn �K1

i
fDug �

h
n

n
�K2

i
� �Dub	
� 0 �30�

The subscript `1' indicates the coupled terms between
free nodal points, `2' indicates the coupled terms
between free nodal and ®xed nodal points, and `b' in-

dicates the components at ®xed nodal points. Vectors
fD �ug and fDug are the nodal acceleration increments
and the nodal displacement increments, respectively.

On the assumption that the displacements at free
nodal points are estimated by adding quasi-static dis-
placement increments fDusg and dynamic displacement
increments fDud g, the displacements at free nodal

points are given as:

fDug � �Dus

	� �Dud

	 �31�

fDusg is evaluated by neglecting inertia force as fol-
lows:

�
Dus

	 � ÿhnn �K1

iÿ1hn
n

�K2

i�
D �ub

	 �32�

Substituting Eqs. (31) and (32) into Eq. (30), the fol-
lowing equation is obtained:
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�M1 �
�
D �ud

	� hnn �K1

i�
Dud

	
�
�
�M1 �

h
n

n
�K1

iÿ1hn
n

�K2

i
ÿ �M2 �

��
D �ub

	 �33�

In this scheme, equivalent forces are calculated by
substituting nodal acceleration increments at ®xed
points into the right side of the above equation and
the incremental kinematic equation is solved by New-

mark's b method.
Basically, it is possible to set the time increment in

implicit codes longer than those in explicit codes.

Although it is possible to reduce the total compu-
tational time by using a longer time increment, the
evaluation of incremental equations at each step makes

the calculation time per step longer, and, in addition,
it leads to an excessive use of computer memory.
Therefore, the conjugate gradient (CG) method is used
as a solver in this study, to reduce the excessive

demand on computer memory. Furthermore, damping
matrices are not considered in this study, in order to
evaluate the structural response on the conservative

side.

3. ASI technique for dynamic collapse analyses

In this section, the algorithm for implementing the
ASI technique as applied to dynamic collapse analysis,

is explained. A relation between the location of a nu-
merical integration point �s1� and occurrence of a plas-
tic hinge �r1� in the linear Timoshenko beam element

�ÿ1Rr1,s1R1�, is obtained [13] by considering the
equivalence conditions between the strain energy ap-
proximations of a linear Timoshenko beam element

and a physical model known as the rigid-bodies spring
model (RBSM). Referring to Fig. 1, the relation is
expressed by the following equation:

s1 � ÿr1 or r1 � ÿs1 �34�

where s1 and r1 are positions of the numerical inte-
gration point and of the plastic hinge or member frac-
ture, respectively.

When the entire region in an element behaves elasti-
cally, the midpoint of the element �s1 � 0� is the most
appropriate integration point from considerations of
accuracy and symmetry. The internal force vector at

step n, based on the ULF, is expressed as

�
n
nF
	 � �

nl

�0T�T��uT�T�
h
n

n
�BL
�0�
iT

�
n
n

n
�R�0�

o
dl �35�

where the value in parenthesis in �nn �BL� indicates the lo-
cation of the integration point, and that in fnn �Rg indi-
cates the point at which stresses are evaluated.

Using elementary beam theory, relations between
bending moments �R1, �R2 and shear forces �R5, �R6 can
be expressed as

�R5 � ÿd �R2

dz
�36a�

�R6 � ÿd �R1

dz
�36b�

Thus, the distributions of bending moment increments
Dn

�R1�s� and Dn
�R2�s� along the element length can be

approximated by the following equations, using the
bending moment increments Dn

�R1�0�, Dn
�R2�0� and the

shear force increments Dn
�R5�0�, Dn

�R6�0� at the mid-

point of the element:

Dn
�R1�s� � Dn

�R1�0� ÿ Dn
�R6�0�nls
2

�37a�

Dn
�R2�s� � Dn

�R2�0� ÿ Dn
�R5�0�nls
2

�37b�

where nl is element length at t � tn: Eqs. (37a) and

(37b) show that bending moments are subject to a lin-
ear change in an element and are likely to take the
maximum value on either ends �s �21). As other

resultant forces have constant values in the element, a
fully plastic state can be determined with the yield
function (14) by comparing the calculated distributions
from Eqs. (37a) and (37b).

In dynamic collapse analyses using the ASI tech-
nique, an explosion or a fracture is expressed by shift-
ing the numerical integration point according to Eq.

(34), immediately after the occurrence of a fractured
section on either end of the element and reducing the
resultant forces of the element simultaneously. For

instance, if a fully plastic section or a fractured section
has ®rst occurred at the left end of an element
�r � ÿ1), the numerical integration point is shifted im-

Fig. 1. Linear Timoshenko beam element and its physical

equivalent.
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mediately to the right end of the element �s � 1�
according to Eq. (34). The released force vector, which

operates on the element at the next step in the analysis,
is then expressed by the following equation:

�
n
nF
	 � �

nl

�0T�T��uT�T�
h
n

n
�BL
�1�
iT

�
n
n

n
�R�ÿ1�

o
dl �38�

Similarly, if a fully plastic section or a fractured sec-
tion has ®rst occurred at the right end of the element
�r � 1), the numerical integration point is shifted to

the left end of the element �s � ÿ1).
In case of the implicit scheme the incremental sti�-

ness matrices and initial stress matrices used in the al-

gorithm, for the case when the entire region in an
element is elastic, areh
n

n
�KL

i
�
�
nl

�uT�T��0T�T
h
n

n
�BL
�0�
iT�

De�0�
�hn

n
�BL
�0�
i

� �0T� � �uT� dl �39a�

h
n

n
�KNL

i
�
�
nl

�uT�T��0T�T
h
n

n
�G�0�

iThn
n

�S�0�
ih

n

n
�G�0�

i
� �0T� � �uT� dl �39b�

In case the section is fully plastic or has fractured ®rst
at the left end of the element �r � ÿ1), the incremental
sti�ness matrices and initial stress matrices are given

by the following equation:h
n

n
�KL

i
�
�
nl

�uT�T��0T�T
h
n

n
�BL
�1�
iT�

D p� ÿ 1�
�

�
h
n

n
�BL
�1�
i
�0T� � �uT� dl �40a�

h
n

n
�KNL

i
�
�
nl

�uT�T��0T�T
h
n

n
�G�1�

iThn
n

�S� ÿ 1�
i

�
h
n

n
�G�1�

i
�0T� � �uT� dl �40b�

It should be noted that when new hinges are formed,
the resultant force increments calculated at the new in-
tegration point are automatically added to those orig-
inally existing at the very point. As a result of using

this procedure, a `non-smoothness' type of phenom-
enon does not appear in the calculation. More details
of the implicit ASI algorithm are explained in the

authors' previous paper [9].
The conceptualization of explosion or member frac-

ture in the ASI technique is shown in Fig. 2, by indi-

cating the location of the numerical integration point
in the linear Timoshenko beam element along with the
rotational and shear springs in the RBSM. When a

member fracture occurs in an element, the numerical
integration point is shifted to the opposite end of the
fractured section from the center of the element.

The release of resultant forces acting on the section
might produce longitudinal waves in the element, when
the member fractures. Therefore, a gradual release pro-
cess or arti®cial viscosity is generally introduced to

reduce this e�ect, for stabilizing the numerical calcu-
lation. However, in this paper, an instant release tech-
nique is used to preserve the simplicity of the

algorithm. Likewise, rebounds and insertions into the
ground or contact between members are neglected in
this algorithm.

It is also to be noted that new imaginary nodal
points, indicating fractured sections for a post pro-
cessor, are required to be introduced after the occur-

rence of member fracture, even though the elements
and nodal points are linked in the numerical model.
The elements with imaginary nodal points are then
visualized as rigid bars thereafter.

4. Dynamic collapse analyses of reinforced concrete

building frames

In this section, the explicit nonlinear code based on
the ULF adaptation of the ASI technique is im-

plemented into an existing ®nite element code and is
then applied to an explosive demolition analysis of a
®ve storied, ®ve span reinforced concrete building

Fig. 2. Conceptualization of explosion or member fracture in

ASI technique.
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frame. Secondly, a seismic damage analysis is carried
out on the same model by an implicit nonlinear code
based on the ULF adaptation of the ASI technique.

4.1. Strength characteristics of the RC member used in

the analysis

The strength characteristics of the RC member used
in the analyses is discussed in this section. Generally,
many parameters such as shape, steel bar arrangement,

material characteristics as well as stress condition or
stress history have big in¯uences on the strength
characteristics of RC members. Consequently, there

are limits to the application ranges of proposal for-
mulas and in this paper, formulas which does not
require strict limitations, are used [15].

A tri-linear type model, as shown in the force-displa-
cement relation curve in Fig. 3, which has a crack
point A and an yield point B, is employed. The for-
mulas of crack and yield strengths are as follows:

. Flexural crack strength.

Mc � 1:8
�����
Fc

p
� Ze � NZe

Ac

�41�

. Flexural yield strength.

My � 0:8at � sfy �D� 0:5ND

�
1ÿ N

bDFc

�
�42�

. Shear crack strength.

Qc �
�
1� N

150bD

�
kc�500� Fc � 0:085

M=Qd� 1:7
bj �43�

. Shear ultimate strength.

Qy �
�
0:115ku � kp�180� Fc �

M=Qd� 0:115
� 2:7

����������������
pw �s fwy

p
� 0:1

N

bD

�
bj �44�

. Sti�ness decrease ratio at yield point.

ay �
�
0:043� 1:65n � pt � 0:043

M

Qd
� 0:33Z0

�

�
�
d

D

�2

�45�

where b is column width, D the column height, h0 the
inner measured height of the column, d the equivalent
height � 0:9D, Ac the cross-sectional area of the RC

member � bD, Fc the compressive strength of concrete,

sfy the yield stress of tension reinforcement, sfwy the
tension yield stress of shear reinforcement, Ze the sec-

tion modulus considering reinforcement
� 1:1Z � 1:1 bD2

6 , n the ratio of Young's moduli of con-
crete and reinforcement, N the normal force, M=Qd

the shear span ratio � h0
2d , Z0 the normal force ratio

� N
AcFc

, j the distance between the center of stresses
� 7

8d, kc the correction factor of the member height
� 0:7, ku the correction factor of member dimension

� 0:7, kp the correction factor of tension reinforcement
ratio � 0:82p0:23t , pt the tension reinforcement ratio
� at

bD , pw the shear reinforcement ratio � at

bw , at the

cross-sectional area of tension reinforcement, aw the
cross-sectional area of a pair of shear reinforcement
and w the distance between each shear reinforcement.

4.2. Explosive demolition analysis of an RC building

frame

The proposed explicit nonlinear code based on the
ULF adaptation of the ASI technique is employed in

Fig. 4. Five storied ®ve span RC building frame model used

in explosive demolition analysis.

Fig. 3. Tri-linear model for reinforced concrete.
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an explosive demolition analysis of a ®ve storied, ®ve
span RC building frame shown in Fig. 4. The members

of the frame are divided into two Timoshenko beam
elements. Dead loads are assigned statically to the

nodal points at the initial step of the analysis, followed
by dynamic sequenced explosions of member sections

in order and time as shown in the ®gure.
The material properties used in the analysis are as

follows: Young's modulus of concrete Ec � 2:1� 105

kg/cm2, Poisson's ratio of concrete nc � 0:17, density

of RC member r � 2:4� 10ÿ3 kg/cm3, compressive
strength of concrete Fc � 240 kg/cm2, yield stress of
tension reinforcement sfy � 4:0� 103 kg/cm2, and ten-

sion yield stress of shear reinforcement sfwy � 3:0� 103

kg/cm2. Member fracture is assumed to occur at the

critical curvature of kcr � 1:0� 10ÿ3 1/mm. The col-
umns on the ®rst ¯oor are 80� 80 cm, and those on

the second and higher ¯oors are 60� 60 cm. All
beams have a section of 40� 40 cm. The main re-

inforcement ratio is 4% for columns below the third
¯oor, 0.8% (minimum allowable ratio) for columns on

upper ¯oors, and 5% for lateral beams. The diameters
of the shear reinforcement in all members are set to
1.3 cm, and the spacing between shear reinforcements

w is 30 cm.
The theoretical maximum time increment Dtcr for

this model, according to Courant's stability condition
Eq. (25), is Dtcr � 6:15� 10ÿ4 s. The time increment is

selected as Dt � 5:00� 10ÿ4 s to avoid any instabilities.
The total number of time steps used in the analysis is

10,000 and the computing time taken using an EWS
(Sun SPARC station 5) is about 110 min.

One of the requirements for successful demolition is
that ¯oor slabs should fragment into small pieces.

Therefore, the explosions are positively sequenced to
occur outward starting from the central core as shown

in Fig. 4, thus causing a destructive shearing distortion
between the stories. As shown in the deformed con-
®gurations of the RC building frame in Fig. 5 the

whole structure collapses inward as expected, as ex-
plosions occur one after another at several beam sec-
tions. Since contact between members is neglected in
the model, phenomena di�erent from those observed

in actual demolitions such as beams going through
¯oors, appear in the con®gurations.
Nevertheless, it is seen that the numerical scheme is

able to model the most important features of an explo-
sive demolition process. The computational e�ciency
and the practicability of using the proposed explicit

nonlinear code are also con®rmed.

4.3. Seismic damage analysis of an RC building frame

In this section, the proposed implicit nonlinear code
based on the ULF adaptation of the ASI technique, is
employed in a seismic damage analysis of the RC

building frame used in the previous section. As in the
explosive demolition analysis, dead loads are applied
statically to the nodal points at the initial step of the

analysis. A dynamic analysis of the frame is performed
with the ®xed points of the model excited by three-
directional seismic wave (Great Hanshin-Awaji Earth-
quake, 1995, JMA Kobe), as shown in Fig. 6.

Newmark's b method �d � 1=2), well known for its
practicability and usefulness, is chosen for the direct
numerical integration scheme in this analysis. How-

ever, problems tend to arise, when there are strong
nonlinearities, if the value of b is selected in the range
of 0 < bR1=4: On the other hand, the results tend to

converge in a stable manner, if the range of 1=4 < b <
1=2 is selected [16] although there are slight limitations
to accuracy. Therefore, a value of b � 0:4 is selected in

Fig. 6. Great Hanshin-Awaji Earthquake accelerogram used

in seismic damage analysis.
Fig. 5. Explosive demolition analysis of RC building frame

using ASI technique.
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the analysis. The time increment used in this analysis is
Dt � 7:50� 10ÿ3 s, and the input time of the seismic

wave is 30 s (4,000 steps). The computing time taken
by the EWS (Sun SPARC station 5) is about 190 min.
Fig. 7 shows the collapse sequence of the RC build-

ing frame. Fracture occurs ®rst at a column member
on the second ¯oor, which has lost its strength by
repeated yielding and unloading, followed by a col-
lapse chain reaction of columns and beams supporting

the third ¯oor and above. The collapse seen in col-
umns on the upper ¯oor is in a way inevitable, because
the main reinforcement ratio in the columns on the

upper ¯oor is reduced to the minimum allowable ratio,
which is actually a commonly used practice in Japan.
The results of the analysis con®rm that the proposed

numerical scheme is able to model seismic damages
observed in actual eqrthquakes. In addition, the algor-
ithm is seen to be economical and practical even

though an implicit nonlinear code is used.

5. Concluding remarks

In the present paper, a nonlinear ®nite element code

using the ASI technique, is extended and applied to
problems of structural discontinuities. Fracture of a
section is modeled by shifting the numerical integration

point with a simultaneous release of the resultant
forces. The algorithm is implemented into an existing
FEM code, and several numerical tests are carried out.

The results show that this technique can be used in nu-
merical estimation of structural reliabilities. However,
the algorithm needs to be improved by considering

contact between members so as to obtain results that
agree better with actual behavior.
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