
 
 

 

  

Abstract— A new torque cancelling system (TCS) that 
stabilizes mechanical sway in quick-motion robots is discussed 
in this paper. It cancels the reaction moment generated by the 
motion of an object by considering the precise dynamics of the 
object and the body of the robot itself. The reaction moment 
can be obtained accurately using the parallel solution scheme 
of inverse dynamics, which handles the dynamics of complex 
robotic architectures by modeling them with finite elements. 
Once the reaction moment is known, it can be cancelled by 
applying an anti-torque to a torque generating device. In this 
paper, the general concepts of the TCS and the parallel 
solution scheme are first described. Then, some examples of 
torque cancelling due to accurate calculations of dynamics are 
demonstrated, by showing the experimental results carried out 
on a prototype TCS system. The objects used in the 
experiments include rigid and flexible, outboard and inboard 
links, where difficult assumptions are normally required to 
consider the accurate dynamics.  

I. INTRODUCTION 
 new torque cancelling system that stabilizes 
mechanical sway in quick-motion robots is discussed in 
this paper. Mechanical sway generated by reaction 

moments occurring in the motion, for example, of space 
stations is a big issue that can not be neglected. Motion 
controls using the conservative law of angular momentum 
are applied by driving control momentum gyros (CMG) [1] 
or reaction wheels [2]. Applications of the gyros and the 
wheels are generally limited to slow momentum transitions, 
relying upon high-gain feedback control. Although the same 
strategy can be used in the motion control of robots when the 
momentum transitions are not so fast, the dynamics of the 
robots should be considered to effectively control quicker 
motions. The torque cancelling system (TCS) discussed in 
this paper cancels the reaction moment generated by the 
motion of an object by considering the precise dynamics of 
the object and the body of the robot itself. The reaction 
moment can be obtained accurately using a newly proposed 
solution scheme of inverse dynamics, which handles the 
dynamics of complex robotic architectures by modeling 
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them with finite elements. Once the reaction moment is 
known, it can be cancelled by applying an anti-torque to a 
torque generating device.  

The newly proposed solution scheme of inverse dynamics 
mentioned above is called the parallel solution scheme [3], 
and it was developed on the basis of a finite element 
approach. By taking advantage of the natural characteristics 
of the finite element method, i.e., the capability of 
expressing the behaviour of each discrete element as well as 
that of the entire continuous system, local information such 
as nodal forces and displacements can be calculated in 
parallel. In this scheme, the analyzed model is evaluated in 
absolute Cartesian coordinates with the equation of motion 
expressed in the dimension of force. The nodal forces are 
calculated incrementally in matrix form, which does not 
require any revision of the overall frame, and the variables 
forming the frame can be revised by simply changing the 
input data in the case of a physical change in the hardware 
system. The calculated nodal forces are then converted into 
joint torques using a matrix-form equation divided into 
terms of force, the transformation between the coordinates, 
and length. In contrast to the conventional and revised 
schemes that use dynamic equations [4]-[6], the structure of 
the algorithm makes it seamless in its application to different 
types of link system under various boundary conditions such 
as open- or closed-loop link systems. It can also consider the 
elasticity of constituted links or passive joints by only 
changing the input numerical model, without the need to 
revise any part of the scheme. Its validity in various 
feedforward control experiments of various kinds of link 
systems has been verified [7], [8].  

In this paper, the general concept of the TCS is first 
described. Then, an outline of the inverse dynamics 
calculation scheme for handling accurate dynamics is shown, 
along with some examples of torque cancelling experiments 
carried out on a prototype TCS system. The objects used in 
the experiments include rigid and flexible, outboard and 
inboard links, where difficult assumptions are normally 
required to consider the accurate dynamics.  

II. TORQUE CANCELLING SYSTEM 
A robot swinging around an arm in a quick motion, for 

example, normally needs a counterbalance motion to avoid 
any mechanical sway.  The TCS proposed in this paper is a 
system that generates anti-torque to suppress the mechanical 
sway, by computing accurate inverse dynamics of the arm 
motion with an accurate consideration of the dynamics of the 
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robot itself. The accurate consideration of the dynamics is 
carried out by implementing the parallel solution scheme 
which is to be explained briefly in the next section.  

A simple explanation of the TCS is drawn in Fig. 1 for the 
uniaxial case. Suppose a rotor is rotated by a motor with a 
specific torque. A reaction moment will occur around the 
rotating axis which will make the whole body twist around 
the axis. To avoid the reaction moment from making the 
twist, a cancelling moment can be generated by another 
motor placed on the axis by supplying a specific, cancelling 
torque. The same concept is used in twin-rotator helicopters, 
where two rotators rotate in opposite directions to cancel the 
twist motion. However, the difference between the 
twin-rotator helicopters and the proposed TCS is that the 
TCS is driven using accurate torques by considering the 
dynamics related to the motion and the overall architecture, 
while the twin-rotators only rotate in opposite directions 
with the same rotational speed. 

A general concept of triaxial TCS is drawn in Fig. 2. If an 
object in motion is considered as an outboard rotor (or a 
cantilever beam as shown in the figure), the reaction 
moments acting on the body become not as simple as those 
in the uniaxial case. The moments will act around 
three-dimensional axes because the center of gravity of the 

overall body is at the offset position from the rotating axis. 
To cancel these moments, three TCSs, each set on each 
dimensional axis, should be placed as shown in Fig. 2. 
However, all of the TCSs do not have to be placed at one 
place or placed exactly on the rotating axis, to maintain the 
function. Actually, a TCS can be mounted, literally, 
anywhere in the body. All a TCS has to do to suppress a 
mechanical sway is to cancel the moment generated at the 
precise location of the TCS. 

III. PARALLEL SOLUTION SCHEME OF INVERSE DYNAMICS 
In this section, an outline of the parallel solution scheme 

of inverse dynamics for considering accurate dynamics of 
the system is described. In the parallel solution scheme, a 
link system consisting of motor joints and links is modeled 
and subdivided using finite elements. A link is substituted 
with a single Bernoulli-Euler beam element, assuming a 
consistent mass distribution along the link [8]. The 
consistent mass matrix of a beam element is formulated in 
the same manner as the displacement function and does not 
require an expression of the center of gravity. This type of 
modeling has the merits of reducing computational time 
without lowering accuracy, particularly against elastic 
deformations. It requires only one-element subdivision per 
member for cases of infinitesimal deformation because the 
deformation of the element is defined using a high-order 
displacement function.  

Figure 3 shows the nodal forces based on global 
coordinates acting on the i th link in a three-dimensional 
open-loop n-link system with a consistent mass distribution. 
The joint torque τix required around the x-elemental axis on 
the i th link is determined by adding the i+1 th joint torque 
τ(i+1)x to the sum of the moments of inertia acting on this link 
and is expressed by the nodal forces based on elemental (or 
link) coordinates as  

 

úix = li(
n
X

j=i+1

Fj)y + Fiûx +ú(i+1)x; (i; j = 1 ò n);
   

 (1)
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Fig. 1.  General concept of uniaxial TCS. 
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Fig. 2.  General concept of triaxial TCS. 
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Fig. 3.  Nodal forces acting on i th link in n-link system with consistent 
mass distribution. 
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where l is the link length and F is the nodal force. (

P

F ) 
indicates the resultant force, the subscripts i, j the link 
number, x, y, z the elemental coordinate components, X, Y, Z 
the global coordinate components, and φ the angular 
components. The right hand side of (1) becomes different in 
the scheme with a lumped mass distributed at the center of 
gravity [3]. By considering the other components around the 
y- and z-axes and arranging them into global coordinates (X, 
Y, Z) in matrix form, the joint torque vector is expressed as 

 
fúng = [Ln][Tn]fPng;                         (2) 

 
where {Pn}  is a 6n×1 vector related to the nodal force and is 
defined as 
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(3) 

 
[Tn] is a 6n×6n transformation matrix and is defined as 

 
[Tn] = [hn][TnGE ];                          (4) 

 
where [hn] is a correction matrix between the x-y and z-x 
coordinate systems, which simply inverts the signs of the 
components in the y-axis direction. [Tn

GE] is a 
transformation matrix between the global and elemental 
coordinates and is expressed as 

 

h

TnGE

i

=

2

6

6

6

6

6

6

6

6

6

6

6

4

T1

T2 0

T3

Å
Å

0 Å
Tn

3

7

7

7

7

7

7

7

7

7

7

7

5

;

            

 (5)

 
 

where 
 

h

Ti

i

=

"

Ai 0

0 Ai

#

                     

 

(6a)
 

 
and 

 

h

Ai

i

=

2

6

4

cosûiXx cosûiY x cosûiZx

cosûiXy cosûiY y cosûiZy

cosûiXz cosûiY z cosûiZz

3

7

5

;
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where φiXx, for example, represents the rotational angle 
between the X (global) and x (elemental) coordinates. 

[Ln] in (2) is a 3n×6n matrix related to link length and is 
expressed as 

 
[Ln] = [TnÉ ][É

n];                           (7) 
 

where [Tn
Λ] is a transformation matrix between each 

elemental coordinate and is expressed as 
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[Tij](i,j=1~n) is expressed using matrix [Ai] shown in (6b) as 
 

[Tij ] = [Ai][Aj ]
T :                           (9) 

 
[Λn] is a matrix expressed as 
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Consequently, joint torques can be obtained, as shown in 

(2), first by converting the nodal forces in global coordinates 
to elemental coordinates and next by multiplying the matrix 
regarding link lengths. The nodal forces are calculated by 
supplying accurate target motions that compensate for the 
inertial forces acting at the links. Therefore, a kinematics 
solution scheme using the finite element approach was also 
developed to handle the elasticity of the links. See the 
references [3], [7] and [8] for more details. 
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IV. TORQUE CANCELLING EXPERIMENTS 

A. Rigid Rotor - Uniaxial TCS System 
A simple rotor-TCS experimental setup, as shown in Figs. 

4 and 5, was made to carry out a numerical estimation and 
some experiments for verification. In this setup, a rotor is 
driven by a gearless motor, and a prototype TCS is placed 
underneath, exactly on the rotating axis of the rotor. The 
frame body is connected to the ground with a rotation-free 
pin joint, where an encoder attached to a nonacutated motor 
is used to detect the rotational angle of the frame body. The 
rotor is made of aluminum, and the frame body is made of 
stainless steel, both with enough sectional area such that the 
whole architecture can be assumed to be rigid without any 
elastic deformation.  

Figure 6 shows the finite element subdivision of the 
experimental setup, with each connection to connection 
modeled with a single Bernoulli-Euler beam element. The 
whole system is modeled with a total of 21 elements and 22 
nodes. The capabilities of modeling this kind of complex 
architecture and computing the dynamics are the main 
features of the parallel solution scheme.  

A rotational motion of 4π rad in 2 s is given to the rotor. 
The torque required for driving the rotor, which is actually 
computed at the upper node of element No. 3 in Fig. 6, is 
obtained by the parallel solution scheme as shown in Fig. 

7(a). Reaction moments generated at the exact location of 
the TCS (lower node of element No. 1 in Fig. 6) are 
calculated as shown in Fig. 7(b). To cancel these moments, 
the torque shown in Fig. 7(c) should be supplied to the TCS. 
Note that the cancelling torques the TCS has to generate are 
a perfect duplicate of the reaction moments (see Fig. 1). 

Figure 8 shows the rotational angle of the frame body 
detected at the encoder attached on the pin joint when the 
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Fig. 6.  Finite element subdivision of the setup. 

 

To
rq

ue
 [N

*m
]

Time [s]

τx
τy
τz

0 0.5 1 1.5 2

-0.02

0

0.02

 
(a) Motion torque for driving the rotor. 
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(b) Reaction moment generated at the exact location of TCS. 
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(c) Input torque for TCS. 
Fig. 7. Input torques and generated moments in the system. 
 

 

 
 

Fig. 4.  Experimental setup of a rotor mechanism with uniaxial TCS
mounted on the rotating axis. 
 

 
Fig. 5.  Layout of a rotor and a TCS. 
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motion torque is actually supplied to the rotor.  It can be 
confirmed from the figure that the frame body is unstable 
during the motion when the TCS is not activated, whereas 
the rotation around the pin joint stops perfectly when the 
TCS is activated, which means that the reaction moments 
generated around the rotating axis are cancelled perfectly by 
supplying the accurately computed cancelling torques to the 
TCS. 

B. Rigid Rotor in Offset Position - Uniaxial TCS System  
Next, an experiment was carried out on a different 

configuration of the frame body, as shown in Figs. 9 and 10. 
In this case, a TCS is mounted in the offset position of the 
rotating axis to see if such a condition affects the capability 
of the system. The whole system is modeled with a total of 
25 elements and 26 nodes as shown in Fig. 11. The same 
rotational motion is given to the rotor as in the previous 
experiment, and, consequently, there is no difference 
between Fig. 7(a) and Fig. 12(a). The motion torques for 
driving the rotor are the values calculated at the upper node 
of element No. 3, and the reaction moments are the values 
calculated at the upper node of element No. 25. The reaction 
moment and the input torque for the TCS around the z axis in 
Figs. 12(b) and 12(c) perfectly agree with those in Figs. 7(b) 
and 7(c). On the other hand, My in Fig. 12(b) is constantly 
shifted to the positive direction because a moment due to 
gravity subjected along the offset length is now generated. 
The moment generated by gravity, however, is supported at 
the pin joint and is not meant to be suppressed in this 
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Fig. 8.  Rotational angle of the frame body around the pin joint during the 
motion. 
 

 

 
 

Fig. 10.  Layout of a rotor and a TCS. 
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Fig. 11.  Finite element subdivision of the setup. 
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(a) Motion torque for driving the rotor. 
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(b) Reaction moment generated at the exact location of TCS. 
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(c) Input torque for TCS. 
Fig. 12. Input torques and generated moments in the system. 

 

 
 

Fig. 9.  Experimental setup of a rotor mechanism with uniaxial TCS
mounted in the offset position of the rotating axis. 

1068



 
 

 

experiment.  
It can be confirmed from Fig. 13 that also in this case, the 

mechanical sway around the pin joint is successfully 
suppressed to a minimal amount by activating the TCS 
mounted in the offset position. 

C. Flexible Link - Uniaxial TCS System  
Lastly, a simple flexible link with TCS experimental setup, 

as shown in Figs. 14 and 15, was made to carry out a 
numerical estimation and some experiments for verification. 
In this setup, a flexible link is driven by a gearless motor, 
and a prototype TCS is placed at an offset position from the 
rotating axis of the active joint. The link system is connected 
to the ground with a rotation-free passive joint, where an 
encoder attached to a nonacutated motor is used to detect the 
rotational angle of the overall body. The flexible link is 
made of poly-carbonate, where the elastic deformation 
occurred in the link should not be neglected in the inverse 
dynamics calculation. The experimental setup is subdivided, 
with each connection to connection by a single 

Bernoulli-Euler beam element. The whole system is 
modeled with a total of 4 elements and 5 nodes as shown in 
Fig. 16. The capabilities of modeling this kind of 
architecture with flexible link and computing the dynamics 
are, again, the main features of the parallel solution scheme.  

A rotational motion of π rad in 2 s is given to the active 
link. The torque required for the active joint is obtained by 

 

 
 

Fig. 14.  Experimental setup with uniaxial TCS. 
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Fig. 15.  Configuration of the setup and location of a TCS. 

 

 
Fig. 16.  Finite element subdivision of the setup. 
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(a) Motion torque for driving the flexible link. 
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(b) Reaction moment generated at the exact location of TCS. 
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(c) Input torque for TCS. 
Fig. 17.  Input torques and generated moments in the system. 
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Fig. 13.  Rotational angle of the frame body around the pin joint during the 
motion when a TCS is mounted in the offset position. 
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the parallel solution scheme as shown in Fig. 17(a). Reaction 
moment generated at the exact location of the TCS is 
calculated as shown in Fig. 17(b). To cancel this moment, 
the torque shown in Fig. 17(c) should be supplied to the TCS. 
Here again, note that the cancelling torque the TCS has to 
generate is a perfect duplicate of the reaction moment (see 
Fig. 1). A torque curve for the TCS when the active link is 
assumed as a rigid member, without any elastic deformation, 
is also shown in the figure. This torque curve is also supplied 
to the TCS to see how the accurate consideration of 
dynamics is important in the torque cancelling.  

Figure 18 shows the rotational angle of the link system 
detected at the encoder attached on the passive joint, when 
the motion torque is actually supplied to the active joint. It 
can be confirmed from the figure that the link system is 
unstable during the motion when the TCS is not activated, 
whereas the rotation around the passive joint stops perfectly 
when the TCS is activated (by the torque obtained by 
assuming the elasticity of the flexible link), which means 
that the vibrating reaction moment generated around the 
rotating axis are cancelled perfectly by supplying the 
accurately computed cancelling torque to the TCS. Also, it 
can be confirmed that the torque curve obtained by not 
assuming the elasticity of the flexible link, is not sufficient 
for the TCS to suppress the reaction moment generated 
around the passive joint.  

V. CONCLUSION 
The torque cancelling system proposed and developed in 

this paper succeeded to suppress a mechanical sway 
generated by the motions of rigid or flexible objects. The 
suppression was realized by considering the accurate 
dynamics of the objects and the main body itself using a 
newly developed calculation scheme of inverse dynamics. 
As a consequence, innovation of the finite element approach 
to the inverse dynamics calculation enables us to consider 
more precise dynamics of robots, which leads to more 
precise feedforward control and cancellation of mechanical 
sway during quick motions. Further simulations and 
experiments on triaxial cases are scheduled. Furthermore, 
we are developing a more compact TCS device that can be 
mounted on actual robots.  
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