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Abstract- A general-purpose solution scheme of inverse dynamics 
for link systems was developed on the basis of a finite element 
approach. It can not only deal with different types of 
configurations, such as open-loop, closed-loop, or multibranch 
link systems, but also with the elasticity of constituted links 
without the need to revise any part of the scheme. The main 
objective of this study is to extend the use of the scheme by 
applying the inverse dynamics calculations to several types of 
underactuated link systems. A solution scheme of kinematics is 
also developed on the basis of the finite element method in order 
to calculate target trajectories that compensate for the inertial 
forces acting in the systems. The obtained trajectories are fed 
into the inverse dynamics calculation using the parallel solution 
scheme. The torque values are verified through comparison with 
the input moment used in finite element analyses, and the 
validity of the parallel solution scheme is confirmed.  

 

I. INTRODUCTION 

Dynamic equations used for feed-forward control of 
robotic mechanisms include interdependent variables between 
the constituting links, since they are normally evaluated in 
relative polar coordinates and in the dimension of torque. 
Accordingly, it will become highly complicated to derive 
inverse dynamics of closed-loop link systems, continuously 
transforming systems, or flexible link systems. Nakamura and 
Ghodoussi proposed a systematic computational scheme of 
the inverse dynamics specified for closed-loop link systems, 
derived using d'Alembert's principle [1]. Sugimoto derived an 
equation of motion for closed-loop link systems by motor 
algebra [2]. Nakamura and Yamane developed a 
computational algorithm for the inverse and forward 
dynamics of open and closed kinematic chains, which can be 
applied seamlessly to the motion of any rigid link system 
without switching algorithms [3]. However, these methods 
are specific for rigid-body link systems, and users 
occasionally must revise the methods or dynamic equations 
when the forms of the system, elasticity of the links, or 
characteristics of the joints (active or passive) are changed. 

Isobe, on the other hand, developed a completely new 
solution scheme for inverse dynamics, called the parallel 
solution scheme [4]. The scheme was developed using a finite 
element approach, handling the entire system as a continuum. 
By taking advantage of the natural characteristics of the finite 

element method (FEM), i.e., the capability of expressing the 
behavior of each discrete element as well as that of the entire 
continuous system, local information, such as nodal forces 
and displacements, can be calculated in parallel. The analyzed 
model is evaluated in absolute Cartesian coordinates with the 
equation of motion expressed in the dimension of force. The 
inverse dynamics is calculated using a matrix-form relation to 
the nodal forces obtained by the finite element calculation. 
The matrix-form equations are divided individually into terms 
of force, transformation between coordinates, and length, 
which makes the scheme potentially higher in applicability 
and expansibility. The scheme can not only deal with 
different types of configurations such as open-loop, closed-
loop, or multibranch link systems, but also with the elasticity 
of constituent links without the need to revise any part of the 
scheme.  

There are two different versions of the parallel solution 
scheme for calculating the inverse dynamics of link systems. 
One version uses two beam element subdivisions per link to 
explicitly express the center of gravity of links, and the other 
uses only one beam element per link with consistent mass 
distribution. The former version is easier to compare with 
conventional dynamic equations since it explicitly expresses 
the center of gravity. We implemented the linear Timoshenko 
beam elements in modeling with the former version [4]. The 
latter, on the other hand, has the merits of high accuracy, 
short calculation time and stability, particularly for flexible 
models [5]. Therefore, the latter version with Bernoulli-Euler 
beam elements for the modeling, is described and used in this 
paper. It is also extended to underactuated link systems [6,7] 
by developing a kinematics solution scheme for the systems, 
which is a revised version of the one used for flexible models. 
Some numerical examples of underactuated systems are 
shown, and the results are verified by comparison with the 
results obtained by finite element analyses. 

 

II. PARALLEL SOLUTION SCHEME OF INVERSE DYNAMICS 

In the parallel solution scheme, a link system consisting of 
motor joints and links, as shown in Fig. 1(a), is modeled and 
subdivided using finite elements. One method of modeling 
the system is to subdivide a link into two beam elements, as 
shown in Fig. 1(b), with an intermediate node explicitly 



expressing the center of gravity [4]. Another method is to 
substitute a link with a single beam element, as shown in Fig. 
1(c), assuming a consistent mass distribution along the link 
[5]. The type of modeling shown in Fig. 1(c) is described and 
used throughout this paper. 

The order of the displacement function used for a 
Bernoulli-Euler beam element is higher than that of a linear 
Timoshenko beam element, and thus, the former can express 
deformation more accurately with fewer elements. The 
consistent mass matrix of the beam element is formulated in 
the same manner as the displacement function and does not 
require an expression for the center of gravity. Note that, 
since the deformation of the element is defined using a 
higher-order function, it requires only one-element 
subdivision per member for cases of infinitesimal 
deformation.  

Figure 2 shows the nodal forces (based on global 
coordinates) acting on the ith link in a three-dimensional 
open-loop n-link system with a consistent mass distribution. 
The joint torque τix required around the x-elemental axis on 
the ith link is determined by adding the i+1th joint torque 

τ(i+1)x to the sum of the moments of inertia acting on this link, 
and is expressed by the nodal forces Fiy and Fiφx based on 
elemental (or link) coordinates as 
 

úix = li(
n
X

j=i+1

Fj)y + Fiûx +ú(i+1)x.           (1) 

 
By considering the other components around the y- and z-
axes and arranging them into global coordinates (X, Y, Z) in 
matrix form, the joint torque vector is expressed as 
 

fúng = [Ln][Tn]fPng,                      (2) 
 
where {Pn} is a 6n×1 vector related to nodal force and is 
defined as 
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[Tn] is a 6n×6n transformation matrix and is defined as 

 
[Tn] = [hn][TnGE ],                          (4) 

 
where [hn] is a correction matrix between the x-y and z-x 
coordinate systems, which simply inverts the signs of the 
components in the y-axis direction. [Tn

GE] is a transformation 
matrix between the global and elemental coordinates and is 
expressed as 
 

Fig. 1.  Modeling of link systems using finite elements.
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where φiXx, for example, represents the rotational angle 
between the X (global) and x (elemental) coordinates.  
 [Ln] is a 3n×6n matrix related to link length and is 
expressed as 
 

[Ln] = [TnÉ ][É
n],                          (7) 

 
where [Tn

Λ] is a transformation matrix between each 
elemental coordinate, and [Λn] is a matrix expressed as 
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III. KINEMATICS CALCULATION FOR UNDERACTUATED 
MODELS  

To calculate the inverse dynamics for underactuated link 
systems, information on target trajectories that compensate 
for the inertial forces acting at the links, as well as on the 
stiffnesses (or flexibilities) of the links and nonactuated joints 

are required. Therefore, a solution scheme of kinematics, that 
was developed on the basis of the FEM for flexible models 
[5], is revised and applied in this study.  

When inertia caused by the overall system motion is taken 
into account, the equation of motion at time t+∆t is derived 
from the principle of virtual work as 
 

[M]f °umgt+Åt+[M]f °udgt+Åt+[C]f _udgt+Åt+[K]fÅudg =

fFgt+Åt ÄfRgt , (10) 
 
where [M] is the total mass matrix, [C] is the total damping 
matrix, [K] is the total stiffness matrix, {F} is the external 
force vector, and {R} is the internal force vector. The vectors 
f  and f  denote the acceleration vectors for the overall 
system motion components and material deformation 
components, respectively, f  denotes the velocity vector 
for material deformation components, and {∆u

°umg °udg

_udg
d} is the 

incremental material deformation vector at time t+∆t. By 
applying Newmark’s β method (δ, β: integration parameters) 
as a time integration scheme, the velocity and acceleration 
vectors are calculated as 
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where f  is the velocity vector for the overall system 
motion components and {∆u

_umg
m} is the incremental motion 

vector at time t+∆t. Substituting (11) into (10) yields 
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By applying {∆um} as the input trajectory (normally an initial 
trajectory for a rigid model) in a time integration loop of (12) 
and using the vectors of (11) at time t, {∆ud} at each time step 
can be successively obtained. The displacement vector {um} 
for the overall system motion components and the 
displacement vector {ud} for the material deformation 
components are calculated incrementally as 
 

fumgt+Åt = fumgt + fÅumg,              (13a) 



fudgt+Åt = fudgt + fÅudg.               (13b) 
 
The total displacement {u} is obtained by summing both the 
overall system motion and material deformation components 
as 
 

fugt+Åt = fumgt+Åt+ fudgt+Åt.               (14) 
 
The final target trajectory considering the effects of stiffness 
and damping is obtained using (14).  

The calculation process described above can be commonly 
used for flexible and underactuated models. However, some 
special treatments should be carried out for the latter model. 
First, we use an elemental stiffness matrix with only axial 
components for nonactuated links, in order to exclude all the 
transmission of bending moments at the nonactuated joints. 
Second, the input trajectory must be successively revised 
during the calculation process to avoid any accumulation of 
numerical errors due to large deformation.  

The trajectory revision algorithm developed in this study is 
explained using a simple example of a two-joint 
underactuated link system. Let the initial trajectory without 
considering any effect be a horizontal 2-second motion, as 
shown in Fig. 3. J1 is an active joint, whereas J2 is a 
nonactuated joint. The parameters of the links are as follows: 
material of the links SUS430; flexural stiffness 20.84 Nm2; 
link lengths 0.25 m; link mass 9.75 ×10-2 kg; surplus mass at 
the tip 0.1 kg. If only the bending moment effect is excluded 
from the nonactuated link, and no revision of the input 
trajectory is performed, the final trajectory will become as 
shown in Fig. 4. It is clear that the coordinates are not 
successfully transformed during the motion, since some 
lengthening of links can be observed in the figure. In order to 
solve this problem, the concept of the successive revision of 

input trajectories, as shown in Fig. 5, is developed. The 
broken lines in the figure are the initial trajectory, whereas 
the gray lines are the input trajectory at each time step and 
dark lines are the revised trajectories at the end of each time 
step. φ is the rotational angle of the active joint (J1, in this 
case), which will not be revised by the algorithm, and θ is the 
rotational angle of the nonactuated joint (J2, in this case), 
which will be calculated using the deformation obtained from 
(13b). Suppose the posture at time step t-1 is represented by 
the dark line shown in the figure, with the rotational angle of 
J1 being φt-1. The input trajectory at the next time step t is 
calculated only by rotating the active joint to φt, whereas the 
overall posture is fixed as it is. The deformations of the link 
system at time step t are calculated starting from this posture 
(gray line at time step t). The calculated result at the end of 
time step t will become as the dark line (with the rotational 
angle of J1 being φt), and the revisions proceed successively 
to the next time step t+1 in the same manner. In general n-
link cases, the input trajectory can be revised by applying the 
above algorithm from the base joint to the end joint 
successively at each time step. 

IV. NUMERICAL EXAMPLES 

Some numerical examples on underactuated link systems 
are shown in this section. Figure 6(a) shows the calculated 
trajectory of a two-joint underactuated model using the 
algorithm described in the previous section. The initial 
trajectory is given as shown in Fig. 3, and the same link 
parameters as those in the previous section are used. The 
integration parameters for Newmark’s method are given as 
δ=1/2 and β=1/4 in this example. The time increment for the 
calculation is set to 10 ms. Note that the trajectory in Fig. 6(a) 
is improved compared with that in Fig. 4. Figure 6(b) shows 
the torque curves calculated using data in Fig. 6(a) as input 

Fig. 3.  Initial trajectory. Fig. 4.  Final trajectory without 
performing successive revision. 
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for the parallel solution scheme described in Section III. The 
torque curve for J2 retains the value of 0 throughout the 
motion, which is proof that the joint is successfully expressed 
as a nonactuated joint. The vibration seen in the torque curve 
for J1 is proof that Link 1 has stiffness (or flexibility). It 
vibrates with a natural period in the range of 0.025 s ~ 0.04 s 
(note that the natural period changes with the posture), which 
matches the theoretical value for a two-link free vibration 
beam, 0.031 s. The vibration, however, generally exerts an 
adverse effect on the stability in actual control. Therefore, the 
property of Link 1 is idealized to that of a rigid link by 
neglecting the velocity and the acceleration of material 
deformation components in (12), f  and f , and the 
effect is verified. Figure 7(a) shows the calculated trajectory 
and Fig. 7(b) shows the torque curves obtained by applying 
the parallel solution scheme to this case. Although there is no 
visual difference between Fig. 7(a) and Fig. 6(a), the 
vibration in the torque curve for J1 is clearly reduced in Fig. 
7(b). The slight rise observed near the starting point in Fig. 

7(b) is due to both the initial velocity and acceleration being 
given as those of a rigid link system without a nonactuated 
joint, and the modeling error arising as a result of not 
considering the stiffness of Link 1. 

_udg °udg

Next, the calculated torque curves are verified by a 
different process. A bending moment is applied to base joint 
J1 of the two-link system and the motion is calculated by a 
mechanical analysis with the FEM. Then, the obtained 
trajectory is fed into the parallel solution scheme and the 
calculated torque curves are compared with the initial input 
moment. Although the calculated torques include the effects 
of internal forces occurring in the link system even though the 
input moment does not, the two curves should match well if 
the motion is not too fast. The model described previously is 
used in this analysis. The time increment for the calculation is 
set to 10 ms. Integration parameters for Newmark’s method 
are given as δ=5/6 and β=4/9 in this example, to apply 
numerical dissipation and to avoid the occurrence of 
unnecessary high-order noise in the results [8]. Figure 8(a) 
shows the trajectory when an input moment was fed into the 
finite element analysis, and Fig. 8(b) shows the input moment 
and the calculated torque values. The two curves are in good 
agreement and again, it can be observed that no torque is 
required at the nonactuated joint, J2. Slight overshoots and 
undershoots observed in the calculated torque curve of J1 
oroginate from the consideration of internal forces in the link 
system.  

Lastly, a numerical example for an eight-joint 
underactuated link system is shown. The parameters of the 
links are as follows: material of the links SUS430; flexural 
stiffness 20.84 Nm2; link lengths 0.1 m; link mass 4.95 ×10-2 
kg; surplus mass at the tip 0.01 kg. The time increment for 
the calculation is set to 5 ms and numerical dissipation is 
considered (δ=5/6 and β=4/9). The joints are numbered from 
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the base joint as J1, J2, …, J8. J1 is an active joint, and the 
other joints are all nonactuated joints. Figure 9(a) shows the 
calculated trajectory and Fig. 9(b) shows the input moment 
and torque curves. Although the required torque for J1 is very 
small in this case, the calculated torque matches the input 
moment, and the torques for other nonactuated joints 
maintain values nearly equal to 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 

The parallel solution scheme of inverse dynamics using 
high-order beam elements for modeling the link systems was 
developed, and the use of the scheme was extended to 
underactuated systems in this work. There are no special 
requirements when applying the scheme to the systems, 
except for the calculation of the correct trajectories. The 
trajectories can be calculated using the successive revision 
algorithm described in this paper, and basically, the use of the 
parallel solution scheme is not limited by the constituent 
number of links. Some feed-forward control experiments of 
underactuated link systems are now in progress.  
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Fig. 9(a).  Trajectory for an 
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