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Abstract

The adaptively shifted integration technique (abbreviated to the ASI technique) is applied to

the dynamic collapse problems of framed structures including the quasi-static collapse under repeated
loading. The unloading of materials plays an important role in these behaviors. In the present analysis
using cubic beam elements, the reshifting of the integration points to the Gaussian points in the unloaded
clements is conducted in order to attain higher accuracy for the material-unloading behavior. The
solutions given by conventional method, the ASI technique with and without reshifting are compared to
show the validity of the newly proposed computational algorithm.

1. INTRODUCTION

The new computational algonthm identified as the
adaptively shifted integration technique has been
developed by the present authors as a smart algor-
ithm for the nonlinear finite clement analysis of
framed structures and has been applied to the static
collapse problems such as plastic collapse and elasto-
plastic buckling collapse problems [1-3]. In the non-
linear finite element analysis by the ASI technique,
the highest computational cfficiency for large-scale
frame analysis has been achieved by shifting the
numerical integration points for the evaluation of
stiffness matrices (i.e. strain cnergy) of the linear
Timoshenko bcam element [4] or the cubic beam
element based on Bernoulh-Euler hypothesis [5].
depending upon the elastic-plastic property of the
element. It is noted that the ASI technique can be
easily implemented in the existing codes.

The ASI technique is applied to the dynamic
collapse problems in the present study. The numerical
integration points shifted with the formation of a
plastic hinge [6] were not shifted, even if the element
returned to the elastic state with the occurrence of
unloading. since the unloading behavior was not
predominant in the plastic collapse and the elasto-
plastic buckling problems under static loading treated
in the previous reports [2, 3]. However. an accurate
simulation for the loading-unloading behavior accom-
panied by the elasto-plastic wave propagation is
important in the analysis of dynamic collapse prob-
lems. The unloading behavior plays an important
role also in the static collapse problem under repeated
loading. The present paper describes a smart algor-
ithm by the ASI technique for the dynamic collapse
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problems, including the static collapse under repeated
loading considering the reshifting in an unloaded
element and verifies its validity by the numerical
studies for the shake-down, the incremental collapse
and the dynamic collapse problems of simple framed
structures.

2. ASI TECHNIQUE FOR LOADING-UNLOADING
BEHAVIORS OF FRAMED STRUCTURES

The ASI technique is applicable to two types of
finite elements which are the linear Timoshenko beam
element and the cubic beam element based on
Bernoulli-Euler hypothesis. The present paper deals
with the cubic element. However, it should be noted
that a similar procedure is also applicable to the
linear element.

In the cubic beam element based on the Bernoulli~
Euler hypothesis, the relation between the locations of
the two numerical integration points 5, (—1 <5, < 1)
and those of the stress evaluation points or of
the occurrence of plastic hinges r; (—1<r,<1) is
expressed by the following eqns[1]:

r=% (1a)
3s,
(i=1,25=—5)
or
Ts (1b)
S, = R
! 3r,
(i=12ry=—ry),
where s;= F1/3r, means s, = —1/3r; and 5, = 1/3r,

and the rest is similarly defined. The above relation
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was obtained by considering the equivalent condition
for the strain energy approximation between the
cubic beam element and the rigid bodies-spring model
in computational discontinuum mechanics {1]. When
the Gaussian integration is used (i.e. 5, = ?Ll,/\/’S).
plastic hinges are formed at the same points. When
s;= F1/3, plastic hinges can exactly occur at the edge
points of the element.

When the entire region in an element behaves
elastically, the Gaussian integration points are
located at the optimal positions which give the most
accurate linear solutions. From eqn (1), r,= F l/’\/3
in this case. The incremental stiffness equation for
the element is then expressed as

(k1{Auj ={A1} (2a)

where

-4 )
LA

In the equations, the following notations are used:
[k} is the tangential stiffness matrix, {Au} is the nodal
displacement increment vector, {Af} is the nodal
external force increment vector. [B(s)] is the general-
ized strain-nodal displacement matrix, [D(r)] is the
elastic resultant force-generalized strain matrix, /. 1s
the element length. The generalized strain increment
vector is calculated as

AL

The resultant force
evaluated as

oo )

The distributions of the resultant forces are given
by the following form of equation:

{Aa(s)} = [T (s)] {Aa(—;)}
V3
+[T:(S)]{Ac<—l~)} (5)
V3

The position of the cross-section in the element
which will first reach a fully-plastic state can be
determined by the following equations:

increment vector is then

flo(=r)=0 (6a)
or

fo(ry)) =0, (6b)

where f{o(r)) is a yield function expressed in terms
of the resultant forces.

Immediately after the occurrence of the fully-
plastic section, the numerical integration points are
shifted to the new positions

1

si=F
3r

o

according to eqn (1) so as to form a plastic hinge
exactly at the position of the fully-plastic section. If
a fully-plastic section has occurred at either of the end
points of the element (i.e. r,= F1), the numerical
integration points are moved to s, = ¥ 1/3. Assuming
that the fully-plastic section has first occurred at
s =ry(>0), the incremental stiffness equation at the
following incremental step is then expressed as

(k]{Au} = {Af .

oo 5
[ )]

The generalized
calculated as

{A((irz)}z[B(i : )]{Au} ®
3r,

The resultant force increment vector is evaluated as

(7a)

strain increment vector is

{Ac(—r))} =[DA—r)]{Ae(—r)} (9a)

(Ac(r,)} = [D,(r)l{Ac(r,)}. (9b)

The resultant force increments at the new integra-
tion points ({Ac (+r,)} calculated by eqns (8) and (9))
are physically those at s = +r,, which, therefore,
must be added to the resultant forces calculated at
s = +r, before yielding ({¢(+r,)} determined by
eqns (5) and (6)). After the other integration point
{—s,) has yielded, the stress matrix [D.(—r;)] in
eqns (7b) and (9a) is replaced with [D,(—r,)].

The above mentioned procedure is the computa-
tional algorithm of the ASI technique which has been
used for the behavior without unloading or in the
case when the effect of the unloading is secondary.
The following algorithm must be added in the
analysis of the quasi-static collapse behavior under
repeated loading and the dynamic collapse behavior.

When all of the plastic hinges formed are judged
to have been unloaded by the following conditions,
the calculation continues, reshifting the numerical
integration points to the Gaussian points at the
following step:
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of
L% (=) [D(—rN{Ae(—=ry)} <0 (10a)

of

Lf— (r) 1D (r2)}{Ae(r:)} <0. (10b)
i

That is, eqns (2a) and (2b) are used as an element
stiffness equation. The generalized strain increments
and the resultant force increments are calculated by
eqns (3) and (4). The resultant force increments at
an arbitary position, including the point of the plastic
hinge formation, are evaluated by eqn (5), and the
reyielding is judged by eqn (6). The computational
procedure after reyielding follows again the equations
starting from eqn (7).

The dynamic collapse analysis is made possible
by adding inertial force terms to the quasi-static
computational procedure, including reshifting of the
numerical integration points as mentioned above.
That is, the following equation of motion for the
complete system is integrated by an appropriate time
integration scheme:

[M]{u}!+Al+[K]l(Au: = "lF:H AT :R)f! (rn
where the following notations are used: [M] is
the mass matrix for the complete system. [K] is
the stiffness matrix for the complete system, |F},, 4,
is the nodal external force vector at ¢t + Az, {R}, is
the nodal internal force vector at 1. {i},, ,, is the
nodal acceleration vector at 7 + At, {Au} is the nodal
displacement increment vector between 1 and 1 + Ar.
The present analysis employs consistent mass as
an element mass matrix which is assumed to not be
influenced by the shifting of the numerical integration
points. Newmark’s § method (f = 1/4.7 =1/2)[7]
is used as a numerical integration scheme for
eqn (11).

The incremental analysis proceeds with an optimum
modeling for the whole process of the elastic behavior
before initial yielding, the loading behavior after
yielding and the elastic unloading behavior in the
present computational procedure, which is expected
to be the most effective computational algorithm for
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the quasi-static analysis under repeated loading and
the dynamic collapse analysis. The concrete forms
of the equations in the above-described formulation
is given in Refs [1, 2].

5766 x 10° kgf

L
Ny = 5034 x 10° [kgf]

o

Fig. 1. Plane frame under repeated loading.
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Fig. 2. Load-displacement relationships in shake-down
analysis: (a) conventional method; (b) ASI technique
without reshifting; (c) ASI technique with reshifting.
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Fig. 3. Displacement vs loading cycles in shake-down analysis:
(a) conventional method; (b) ASI technique without
reshifting; (c) ASI technique with reshifting.

3. SHAKE-DOWN AND INCREMENTAL COLLAPSE
ANALYSIS OF FRAMED STRUCTURES

Figure 1 shows the analyzed problems[6]. The
portal frame with pin-jointed lower ends is subjected
to the horizontal loading P, at the left, upper edge and
the vertical loading P, at the midspan of the beam
alternately. There occur two cases of the shake-down
(P, =0.90M,/L) and the incremental collapse (P,
=0.96M,/L), depending on the common maximum
value to both loads P,,, . Each case has been analyzed
by the following three methods in order to show the
validity of the ASI technique in comparison with
the conventional method: (a) the conventional finite
element method in which the numerical integration
points are fixed to the Gaussian integration points;
(b) the ASI technique without reshifting of the
numerical integration points at unloading; and (c) the
ASI technique with reshifting of the numerical inte-
gration points (to the Gaussian integration points) at
unfoading.

3.1. Shake-down analysis

Figures 2 and 3 show the computed results in
which there has occurred the shake-down. The
load—displacement curves and the displacement-
loading cycles relations are shown in Figs 2 and 3,
respectively. Note that P, and P, are plotted in
the upper and the lower directions, respectively,
on the vertical axis of Fig. 2. The displacement in
Figs 2 and 3 is the horizontal displacement at the
left, upper edge (see Fig. 1). The numbers of
elements shown in the figures are those for the
whole structure. The beam has two elements and
each column has one element in the four-element
subdivision, which 1s the minimum possible number
of elements. The bisection of each element gives
successively eight-element, 16-element and 32-element
subdivisions.

As shown in Fig. 3a. the conventional method
has not given the shake-down behavior but the elastic
deformation in the cases of four-, eight- and 16-
element subdivisions. The convergence of solutions
is extremely slow. These results are due to the use
of the computational algorithm in which stresses are
evaluated and plastic hinges are formed only at the
Gaussian integration points. On the other hand,
the ASI technique without reshifting has successfully
simulated the shake-down phenomenon, even by
the four-element modeling and the convergence of
solutions is fast, as shown in Fig. 3b. However,
it is seen that there is room for improvement in the
elastic rigidity at unloading in the case of fewer
elements. This is because the numerical integration
points have been shifted to s,= F1/3 and the calcu-
lation has continued without reshifting at unloading.
The improved ASI technique with reshifting of the
numerical integration points to the Gaussian points
has given fairly accurate solutions even by the coarse
mesh.
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Fig. 4. Load-displacement relationships in incremental
collapse analysis: (a) conventional method; (b) ASI tech-
nique without reshifting; (c) ASI technique with reshifting.
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Fig. 5. Displacement vs loading cycles in incremental
collapse analysis: (a) conventional method; (b) ASI tech-
nique without reshifting; (c) ASI technique with reshifting.
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3.2. Incremental collapse analysis

Figures 4 and 5 are the computed results in which
there has occurred the incremental collapse. The
loading—displacement curves and the relationship
between displacement and loading cycles are plotted
in Figs 4 and 5, respectively. The numbers of elements
shown in the figures have the same meaning as in the
shake-down analysis.

As shown in Fig. 5a, the conventional method has
given the shake-down like behaviors in the case of
coarse meshes such as the four- and eight-element sub-
divisions. The convergence of solutions is extremely
slow. These results are due to the fact that stresses
are evaluated and plastic hinges are formed at the
Gaussian integration points. On the other hand,
the ASI technique has considerably improved the
accuracy and the convergency of solutions. The four-
element modeling has given a practically sufficient
solution. The displacements at the end of each load-
ing cycle as shown in Figs 5b and ¢ are almost
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Fig. 6. Shake-down analysis by the conventional method
with non-uniform mesh, (a) load-displacement relationships
and (b) displacement vs loading cycles.
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permanent deformations due to plastic deformations,
therefore they are not much influenced by the reshift-
ing at unloading. However, comparing Figs 4b and c,
it is clear that the elastic rigidity at unloading in
the load—displacement curves has been considerably
improved by the reshifting at unloading.

Figure 6 shows the results by the non-uniform
meshes as is often used. The 10-element approxi-
mations for the whole structure have been used, in
which smaller elements are placed in the neighbor-
hood of member joints and a concentratedly loaded
point. The solutions depend a lot on the length of the
smaller elements (they converge to the exact solution
as a limit of zero length!) as seen from the three
results of cases 1-3. This method is not easy to use.

4. DYNAMIC COLLAPSE ANALYSIS OF
FRAMED STRUCTURES

The dynamic collapse behavior of a simple plane
and a space frame subjected to step loading is analyzed
in the present section. Each frame is analyzed by the
following three methods in order to show the validity
of the ASI technique in comparison with the con-
ventional method: (a) the conventional finite element
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P
12WF120(180 in) 100 ki
-t
Z 7
12WF120 16WF36
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=03

&y = 0.33 x 10° [ib/in?]
p=0.734 x 10-2 (ib- sec?/in*]
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Ny = 1.165 x 10° [1b]

Fig. 7. Plane frame subjected to step loading.
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Fig. 8. Elastic response of a plane frame.
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Fig. 9. Elasto-plastic response of a plane frame: (a) con-
ventional method; (b) ASI technique without reshifting;
(c) ASI technique with reshifting.
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method in which the numerical integration points are
fixed to the Gaussian integration points; (b) the ASI
technique without reshifting of the numerical integra-
tion points at unloading; and (c) the ASI technique
with reshifting of the numerical integration points
(to the Gaussian integration points) at unloading.

4.1. Dynamic collapse analysis of a plane frame

Figure 7 shows the analyzed problem [8]. The
portal frame with fixed lower ends is subjected to
a horizontal step loading at the left, upper edge.
The mass of steel members shown in the figure was
multiplied by 625 in the analysis.

Figure 8 is the result of the elastic response analysis
(there is no distinction between the ASI technique
and the conventional method in the elastic analysis).
It is seen that the one-element modeling per member
has given a converged solution in the present prob-
lem, not including the vibration modes of higher
order.

Figure 9 shows the time histories of the horizontal
displacement at the loaded point given by the three
methods. In the result of Fig. 9a, given by the
conventional method, the convergence is extremely
slow as in the quasi-static analysis under repeated
loading. The result of Fig. 9b, given by the ASI tech-
nique without reshifting of the numerical integration
points is considerably improved in comparison with
the solution by the conventional method. However,
there is a lot of error in the stationary vibration
period in the case of fewer elements. This is due to the
fact that the stationary elastic vibration accompanied
by the unloading behavior cannot be analyzed
accurately by the algorithm, which does not reshift
the numerical integration points from s,= F1/3.
The convergency is good, both with respect to the
absolute value of displacement and the vibration
period in the results of Fig. 9c given by the ASI
technique, with reshifting the numerical integration
points at unloading. The one-element modeling per
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Fig. 10. Space frame subjected to step loading.
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Fig. 11. Elastic response of a space frame.

member can practically give sufficient solutions in the
present problem, not including the vibration modes
of higher order.

The computed results for the time sequence of
occurrence of plastic hinges by the underlined number
of elements are also shown in Fig. 9. It is also seen
from these resuits that the one-element per member
solution by the ASI technique with reshifting of
integration points is comparable to the result with
the 32-element approximation by the conventional
method.

4.2. Dynamic collapse analysis of a space frame

Figure 10 shows the analyzed example [9]. The
triangular-shaped rigid frame with fixed lower ends
is subjected to a dead load (self-weight) and a step
loading at the member joint 2. Figure 11 is the result
of the elastic response analysis. It is seen that the
one-element subdivision has given the solution which
almost agrees with the converged solution.

Figure 12 shows the time histories of the displace-
ment in the x direction at the loaded point (the point 2)
given by the three methods. The results are qualita-
tively similar to those for the plane frame in the
preceding subsection. That is, the convergence is so
slow that even the 16-element per member solution
includes several percentage of error in the results of
Fig. 12a given by the conventional method. The results
of Fig. 12b. given by the ASI technique without
reshifting of the numerical integration points, are
more accurate than those by the conventional method.
However, there 1s much error with respect to the
vibration period in the fewer-element solutions.
Both the absolute value of the displacement and the
vibration period are quite accurate in the results
given by the ASI technique with reshifting, which
can improve the accuracy for the elastic vibration
accompanied by the unloading, as shown in Fig. 12c.
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Fig. 12. Elasto-plastic response of a space frame: (a) con-
ventional method; (b) ASI technique without reshifting;
(c) ASI technique with reshifting.
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It is seen that one-element per member modeling
can give practicaily sufficient solutions in the present
problem.

The computed results for the time sequence of
occurrence of plastic hinges by the underlined
number of elements are also shown in Fig. 12. It
is seen that the two-element per member solution by
the ASI technique with reshifting of the integration
points well corresponds to the result with the
32-clement approximation by the conventional
method.

5. CONCLUDING REMARKS

The ASI technique, which has been proposed as
a smart algorithm for the nonlinear finite element
analysis of large-scale framed structures, has been
applied to the quasi-static collapse problem under
repeated loading and the dynamic collapse problem.
The reshifting algorithm of the numerical integration
points at unloading has been devised, considering the
importance of the unloading behavior. As a result, a
considerable improvement of computation accuracy
has been achieved. not only in comparison with the
conventional method but also with the ASI technique
without reshifting. The implementation of the ASI
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technique with reshifting in the existing codes is quite
easy.
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