
 
Abstract—We show the unified dynamics computation 

employing Jacobian that relates the center of gravity (COG 
Jacobian) to joints of link mechanisms. COG Jacobian is used for 
the behavior planning and the control of humanoids. Also, it 
usually expresses the relationship between the joints and COG of 
a robot's whole body. However, this scheme that is suggested by 
us calculated regarding each link and not the robot's whole-body. 
Moreover, we can obtain the torques of the active joints in 
mechanisms by relating COG Jacobian to the applied forces to 
COG and by using principle of virtual work. The COG Jacobian 
is obtained via the process calculating the accelerations at COG of 
links and the equation of motion expressed matrix forms by using 
COG Jacobian. Therefore, we can compute the equation of 
motion of a mechanism effectively, and the forward dynamics 
which can be calculated by the obtained equation. We can 
calculate the inverse dynamics regardless of open- and closed-link 
mechanisms. 

I. INTRODUCTION 
Machines and robots are modeled into link mechanisms of 

rigid-body when we compute their dynamics analyses. The link 
mechanisms simplify structures of components and are 
employed as the kinematic model. Various methods based to 
Newton-Euler equation of motion are developed as dynamics 
of link mechanisms. In serial mechanisms, Newton-Euler 
formulation that is efficient and is able to be solved at 
computation cost proportioned to DOF of a mechanism is 
proposed. And, the laws of an inertial force occurring at the 
center of gravity (COG) of the link that is moving and 
balancing with external forces are used in this method. 
Moreover, issues of dynamics are not only open- and 
closed-link mechanisms, but applications to mechanisms 
containing redundant actuators, collisions and contacts are also 
expected. Therefore unified dynamics computation schemes 
treating their issues are hoped. A Method of equations of 
motion solving simultaneous equations of constraints 
corresponding to each joint is used in a lot of present versatile 
dynamics simulators [1]. However, this method needs very 
heavy computation cost and long computation time at the 
analyses of the complex structural mechanisms. Therefore, at 
closed-link mechanisms, as an efficient method such as 
Newton-Euler formulation are also required because their 
mechanisms are usually complicated. The solution of equation 
of motion employing Lagrange multipliers has been known as 
inverse dynamics for closed-link mechanisms, but it is not 
efficient. Then, after considering closed-link mechanisms to be 

virtual open-link mechanisms of tree structure temporarily and 
solving as a problem of open-link mechanisms, there is a 
method of solving inverse dynamics using Jacobian matrix 
changing from generalized forces of open-link mechanisms to 
the ones of closed-link mechanisms [2][3]. This method needs 
to cut some arbitrary joints. Therefore, in complex mechanisms, 
to choose the cutting joints and the generalized coordinates is 
problems. Nakamura and Yamane show the method that is 
employed as 6 DOF virtual links to all joints of each link as 
developed method than the above method and apply to 
mechanisms with discontinuous changes of constraints [4], and 
this method is the solution to above problems. However, this 
method also needs to compute as virtual open-link mechanisms. 
The computation of the change processes is not necessary at 
the unified scheme. Isobe suggests a method applying Finite 
Element Method to inverse dynamics [5][6]. It is able to 
represent equations of inverse dynamics as equations of 
matrices by coordinate transformation on dimensions of forces. 
Therefore, it can be applied to mechanisms with changes of 
constraints. The links are divided to some elements and some 
nodal points, and forces are applied to the nodal points without 
distinguishing static forces and kinetic forces. As others, there 
is the method that uses the motor algebra, and it enables to 
derive the equations of motion of open- and closed-link 
mechanisms [7]. But, we have to solve simultaneous equations 
of forces regarding passive joints at closed-link mechanisms. 
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Fig. 1  Humanoid model. COG Jacobian is usually calculated to COG 
of the whole-body of the humanoid. And, it shows the relationship 
between the joints and COG of the humanoid. 



 

In this paper, we show a computational method that is 
employing Jacobian connecting COG of links with active 
joints. This Jacobian usually connects COG of the whole-body 
with active joints and it is used for motion planning and 
controls of humanoids [8]-[11]. This method is deriving COG 
Jacobian matrices that connect COG of each link with active 
joints, and calculating the inverse dynamics by using the 
principle of virtual work. In this method, the equation of 
motion is derived efficiently because COG Jacobian matrices 
can be derived in the derivation process of velocities or 
accelerations. Moreover, it has the feature that is able to 
represent equations of inverse dynamics as equations of 
matrices. As the examples, we show the applications to an 
open-link mechanism, a close-link mechanism and a 
mechanism with redundant actuators. 

 

II. DYNAMICS EMPLOYENG COG JACOBIAN 
A. COG Jacobian 
 This section presents the differences between the general 
COG Jacobian and the COG Jacobian of the proposed method. 
 The orientation of COG of robot is denoted by 

TT
G

T
GG ],[ 000 θpq = , and the orientation vector regarding to all 

joints is denoted by TT
n

TT
n

T ],,,,,[ 11 θθppq LL= , where pG0 and 
θG0 are the dimensions of COG of the robot, pi and θi are the 
dimensions of joint i, n is number of the joints such as in shown 
Fig.1. The COG Jacobian matrix of whole-body is described as 
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The COG Jacobian matrix is only one in this case. However, 
the COG Jacobian matrices are derived in relation to each link 
in the suggested method by us as in shown Fig.2.  
 At first, the orientations of the mechanisms with holonomic 
constraint are decided by the active joints only. The function 

)(θgi  is given such that the orientations TT
Gi

T
Gii ],[ θpq =  of the 

link i ( Ni ,,1L= ) are expressed as 
 

)( mii θgq = , (2)
 
where pGi and θGi are the dimensions of the COG of the link i, 

M
m R∈θ  is the vector expressing the displacements of the 

active joints, N is number of the links and M is number of the 
active joints. Thus, the link velocity iq&  at the COG of link i is 
written in the following form: 
 

,)( mmii θθGq && =  (3)
 
where the following matrix is the COG Jacobian matrix of the 
link i: 
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Similarly, the link acceleration   at the COG of link i is 

written in the following form: 
 

mmimmii θθGθθGq &&&&&& )()( += , (7)
 
where ],,[ 1 iMii GGG &L&& =  is the time-derivative of )(θGi . 

Equation (7) can be combined with equations of all links as 
following equation: 
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where MNTT

N
T R ×∈= ],,[ 1 GGG L is the COG Jacobian matrix 

regarding to the all links and MNTT
N

T R ×∈= ],,[ 1 GGG &L&& is 
same.  
 
B. Inverse Dynamics 

 The external force vector iF  around the COG of the link i 
is expressed as the following equation: 

 
),( iiiii qqbqMF &&& += , (10)

where iM  is the mass matrix of the link i, ),( ii qqb &  is the term 
regarding gravitational forces etc. And, 
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Fig. 2  Multi-rigid-body model. And, the forces and the moments 
regarding the inertia by the motion are applied to all rigid-bodies. 



 

 
where Gif and Gin are the forces of the translation and the 
rotation around the COG of the link i. Equation (9) can be 
combined with all links as  
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 Next, we compute ],,[ 1 Miimi ττ L=τ T which is the torque 
vector regarding to the link i. We obtain miτ  by the product of 
the transposed matrix of iG  and iF  like we do in static 
dynamics. Thus, miτ  is computed by 
 

i
T
imi FGτ = . (14)

 
And we obtain the torques of all active joints by using 
 

FGτ T
m = , (15)

 
where .],,[ 1

TT
M

T
m τττ L=   

Using (9) and  (13), (15) is written as  
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where 
 

MGGθH T
m =)( , (17)

)(),( bθGMGθθB += m
T

mm
&&& . (18)

 
Equation (16) is the form of the generalized equation of 

motion. Thus, we find the following relationships: )(θH is the 

inertia matrix, and ),( θθB & is the term regarding centrifugal, 
colliolis and gravitational forces. 

Computations for inverse dynamics employing COG 
Jacobian consist of following three steps: 
1. compute q , q&  and q&&  using (2), (3) and (7), 

2. compute )(θH and ),( θθB &  using obtained G  and G&  in 
step 1, 

3. compute mτ  using )(θH and ),( θθB & . 
Moreover, in the case that the end-effecters of a mechanism 

is applied the external forces which is denoted by fe, (16) is 
written the following form by using the Jacobian matrix J that 
connects the active joints and the end-effecters: 

 

e
T

mmmmm fJθθBθθHτ ++= ),()( &&& . (19)
   

C. Forward Dynamics 
We show the primitive method of forward dynamics 

employing COG Jacobian.  
At first, derive the equation of motion using (16). Next, 

solve the derived equation for mθ&& . Then, we obtain the 
solutions by 

 
)},({)( 1

mmmmm θθBτθHθ &&& −= − . (20)
 

 However, computation of the inverse matrix of 
)(θH needs the large computation cost, when a mechanism has 

many active joints. Therefore, we suggest using more efficient 
methods such as the ones shown in [12].  
 

D. Features of COG Jacobian Matrices 
 COG Jacobian matrices have the feature that the elements of 
the matrices are decided by a structure of mechanisms. It is 
shown by the following examples. 

Fig. 3 is examples of mechanisms. (a) in Fig.3 shows a 
primitive open-link mechanism with N links. If we already 
obtainG , then the torques of the active joints is expressed as 
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The COG Jacobian matrix G  is expressed as the form that 

is upper triangular matrix because the torques have correlation: 
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(a) Robot arm model of serial mechanisms. 
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(b)  Robot hand model. 
 

Fig. 3  Examples for showing the features of COG Jacobian matrices on 
two types of mechanisms. (a) is a serial link mechanism. (b) is a robot 
hand model picking a object. 



 

i.e. the torques of the active joints are affected by the torques of 
the active joints connected towards the end link than itself. 

Next, (b) in Fig. 3 shows a robot hand picking an object. If 
we already obtainedG , then the torques of the active joints is 
expressed as 
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where Ji and fei are the Jacobian matrices and the reaction 

forces. If fei are known, we can consider as that the left and the 
right finger are the independent mechanisms. Therefore, 
because the left and the right finger have no correlation, the 
elements except diagonal ones of G  are zero. 

III. EXAMPLES 
At first, the proposed scheme employing COG Jacobian 

matrices is applied to an open-link mechanism with 2 links (see 
Fig.4(a)). Next, we show the application to a closed-link 
mechanisms without redundant actuators (see Fig.4(b)). 
Finally, we apply to a mechanism with redundant actuators (see 
Fig.4(c)).  

 
A. Open-Link Mechanism 

The active joints of the mechanism in the shown Fig. 4(a) 
are denoted by T

m ],[ 21 θθ=θ . The number N and M are equal to 
two together. The vector iq  that expresses the orientation of 
link i is calculated by the following equations: 
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where li is the length of the link i, lGi is the length from the end 
to the COG of the link i, and  
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Next, we compute the velocities and the accelerations at the 

COG of the link i.  
The velocities are expressed as 
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and the accelerations are expressed similarly as 
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where  
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and 
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 Substituting (28) and (29) for (10), we obtain the forces as 
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 Finally, the torques of the active joints is obtained by 
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 Figure 5 shows the target motion of the mechanism (length 
of each link: 0.10 (m); weight: 1.54 x 10-2 (kg); moment of 
inertia: 1.29 x 10-5 (kgm2); COG at midpoint). Then, we obtain 
the torque curves of the active joints using (37) (see Fig. 6). 

 
B. Closed-Link Mechanism without Redundant Actuators 

The active joint of the mechanism are denoted by 3θθ =m . 
And, N = 3, and M = 1 of the mechanism. The passive joint 
angle 1θ  and 4θ  can be expressed by 3θ  only: i.e. they are the 



 

functions of 3θ  as 
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Therefore, the vector q  is expressed by the following 

equations: 
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Next, differentiate (39) with respect to time, then q& is 
expressed as 
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 Now we haveG , and F  is obtained by using (13). Since the 
torque 3τ  of the active joint 3θ  is computed by 
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C. Closed-Link Mechanism with Redundant Actuators 
 The active joint of the mechanism are denoted by 

T
m ],[ 31 θθ=θ . And, N = 3, and M = 2 of the mechanism. The 

passive joint angle 4θ  is the functions of 1θ  and 3θ  as 
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 Therefore, q  and q&  are expressed as follows: 
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 And the torque and are computed by 
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In this paper, we don’t discuss about the optimization of the 
actuational redundancy. However, it is enabled by using 
Jacobian matrices that are obtained from the constraint 
equations of joints. 
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(a)  Model of serial link mechanisms with 2 

links. 
(b)  Model of closed link mechanisms without 

redundant actuators. 
(c)  Model of closed link mechanisms with a 

redundant actuator. 
Fig. 4  Three types of link mechanisms for the dynamic analysis examples employing the COG Jacobian matrices. 
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Fig. 7  Target motion 

 

 
Fig. 8  Torque curves 



 

Figure 7 shows the target motion for the closed-link 
mechanisms of the subsection B and C (length of each link: 
0.20 (m); weight: 0.628 (kg); moment of inertia: 2.11 x 10-3 
(kgm2); COG at midpoint). We obtain the torque curves of the 
active joints using (42) and (47) (see Fig. 8). 

 

IV. CONCLUSION 
We propose the unified scheme that is able to be applied to 
various link mechanisms for dynamics and show the numerical 
examples of the three mechanisms of difference type together 
in this paper. The proposed method employs COG Jacobian 
matrices for dynamics analyses. We can derive efficiently the 
equation of motion by using it. 

 COG Jacobian matrices are able to be obtained in a 
deriving process of velocities or accelerations. They has 
feature which COG matrices are affected by structures of a 
mechanism. Moreover, an obtained equation of motion is 
expressed as the matrix form. Those features show that 
dynamics computation employing COG Jacobian is effective 
as a scheme that expresses the dynamics of link mechanisms. 
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Fig. 5  Target motion 

 

 
Fig. 6  Torque curves 


