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Abstract  Dynamic equations used for feed-forward control of robotic mechanisms include 
interdependent variables between the constituting links, since they are normally evaluated in relative polar 
coordinates and in the dimension of torque. Accordingly, it will become highly complicated to derive 
inverse dynamics of closed-loop link systems, continuously transforming systems, or of flexible link 
systems. Consideration of dynamics is required to realize stable control of robotic systems, and many 
researchers have tried to deal with the dynamics by improving theories and methods against each system.  
Isobe, on the other hand, developed a completely new solution scheme for inverse dynamics called the 
parallel solution scheme, which can be commonly applied in different types of link systems such as open- 
or closed-loop mechanisms, or ones constituted with rigid or flexible link members. The scheme is 
developed using a finite element approach, handling the entire system as a continuum. By taking 
advantage of natural characteristics of the finite element method (FEM), i.e., the capability of expressing 
the behavior of each discrete element as well as that of the entire continuous system, local information 
such as nodal forces and displacements can be calculated in parallel. It evaluates the analyzed model in 
absolute Cartesian coordinates with the equation of motion expressed in dimension of force. The inverse 
dynamics is calculated using a matrix form relation to the nodal forces obtained by the finite element 
calculation. The matrix-form equations are divided individually into terms of force, transformation 
between coordinates, and length, which makes the scheme potentially higher in applicability and 
expansibility.  
The scheme can not only deal with open- and closed-loop link systems independently, but it can also deal 
seamlessly with those that gradually change their forms and dynamics. There is also no need to revise the 
basic numerical algorithm of the scheme, regardless of the stiffness of the constituting link member. 
Particularly, it is considered to be valid for link systems with elastic members, since the calculation 
process of the scheme is based upon the finite element approach. 
The main objective of this study is to verify the extensive ability of the scheme as a unified scheme, by 
carrying out inverse dynamics calculations on several types of rigid and flexible manipulators, along with 
applications to feed-forward control of various types of link systems and robotic mechanisms. 
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INTRODUCTION  
 

Dynamic equations derived by general schemes, such as the Newton-Euler method or the Lagrangian 
method, include interdependent variables between the constituent links, since they are evaluated in relative 
polar coordinates and in the dimension of torque. Accordingly, it is highly complicated to derive the 
inverse dynamics of closed-loop link systems, continuously transforming systems, and flexible link 
systems. Nakamura and Ghodoussi proposed a systematic computational scheme of the inverse dynamics 
specified for closed-loop link systems, which was derived using d'Alembert's principle [1]. Sugimoto 
derived an equation of motion for closed-loop link systems by the motor algebra [2]. Nakamura and 



Yamane developed a computational algorithm for the inverse and forward dynamics of open and closed 
kinematic chains, which can be applied seamlessly to the motion of any rigid link system without 
switching algorithms [3]. However, these methods are specified for rigid-body link systems, and users 
occasionally need to revise the methods or dynamic equations when the form or elasticity of the hardware 
system is changed. 
An approach with a completely different viewpoint is described in this paper, which enables not only the 
inverse dynamics computation of any rigid link system, but also that of flexible link systems by the same 
procedure. Isobe and Nakagawa first attempted an application of the finite element method (FEM), a 
widely used computational tool for analyzing structures and fluids, to a control system of connected 
piezoelectric actuators, and achieved good control not only of the actuator itself but also of the entire 
system [4]. By taking advantage of the natural characteristics of the FEM, i.e., the capability of expressing 
the behaviour of each discrete element as well as that of the entire continuous system, local information 
such as nodal forces and displacements can be calculated in parallel. After finding that the FEM can be 
used as a control scheme of a continuum, Isobe implemented the FEM in a solution scheme of inverse 
dynamics for various types of link system [5-7]. The scheme is called the parallel solution scheme, since 
the nodal forces in discrete models are calculated in parallel from a mechanical point of view. In the 
scheme, the analyzed model is evaluated in absolute Cartesian coordinates with the equation of motion 
expressed in the dimension of force. The nodal forces are calculated incrementally in matrix form, which 
does not require any revision of the overall frame, and the variables forming the frame can be revised by 
simply changing the input data in the case of a physical change in the hardware system. The calculated 
nodal forces are then converted into joint torques using a matrix-form equation divided into terms of force, 
the transformation between the coordinates, and length. The structure of the algorithm makes it seamless 
in its application to different types of link system under various boundary conditions such as open- or 
closed-loop link systems. The scheme can also be applied to link systems with different values of flexural 
stiffness. For many years, considerable effort has been made to model [8-11] or even calculate the inverse 
dynamics [12] of robotic arms with elastic members. In contrast, the parallel solution scheme only requires 
a precise target trajectory that takes into account stiffness and damping. 
There are two different versions of the parallel solution scheme for calculating the inverse dynamics of 
link systems. One version uses linear Timoshenko beam elements with a single integration point to 
explicitly express the center of gravity of links, and the other uses Bernoulli-Euler beam elements with two 
integration points to express the consistent mass distribution of the links. The former version is easier to 
compare with conventional dynamic equations since it explicitly expresses the center of gravity. The 
latter, on the other hand, has merits in accuracy, calculation time and stability. The latter version is 
described in this paper, and some numerical examples are shown for several types of link system. The 
scheme is also implemented in a control system to evaluate the performance under actual control with 
dynamics compensation, and some control applications are shown for several types of link system and a 
robotic arm.  
 
PARALLEL SOLUTION SCHEME 
 

In the parallel solution scheme, a link system consisting of motor joints and links, as shown in Fig. 1(a), is 
modeled and subdivided using finite elements. One method of modeling the system is to subdivide a link 
into two linear Timoshenko beam elements, as shown in Fig. 1(b), with an intermediate node at the center 
of gravity [6]. Another method is to substitute a link with a Bernoulli-Euler beam element, as shown in Fig. 
1(c), considering the consistent mass distribution along the link. In this section, a type of modeling shown 
in Fig. 1(c) is described. 
 

1. Formulation using Bernoulli-Euler beam elements  The order of the displacement function used for 
the Bernoulli-Euler beam element is higher than that of the linear Timoshenko beam element, and thus, it 
can express deformation more accurately with fewer elements. In the model, the link mass is distributed 
consistently, in the same manner as the displacement function, and does not require an expression for the 
center of gravity. Note that, since the deformation of the element is defined using a higher-order function, 
it requires only one-element subdivision per member for infinitesimal deformation cases.  



Figure 2 shows the nodal forces (based on global coordinates) acting on the ith link in a three-dimensional 
open-loop n-link system with a consistent mass distribution. The joint torque τix required around the 
x-elemental axis on the ith link is determined by adding the i+1th joint torque τ(i+1)x to the sum of the 
moments of inertia acting on this link, and is expressed by the nodal forces Fiy and Fiφx based on elemental 
(or link) coordinates as 
 
úix = li(

n
X

j=i+1

Fj)y + Fiûx +ú(i+1)x.                                                                                                                   (1) 

 
By considering the other components around the y- and z-axes and arranging them into global coordinates 
(X, Y, Z) in matrix form, the joint torque vector is expressed as 
 
fúng = [Ln][Tn]fPng,                                                                                                                                          (2) 

 
where {Pn} is a 6n×1 vector related to nodal force, defined as 
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Fig. 1  Modeling of link systems using finite elements 

Joint (Servo motor) 

Center of 
gravity 

Link

+ 

 + 

Linear Timoshenko 
beam elements 

Nodes 

: Lumped mass 

: Motor mass 

Bernoulli-Euler 
beam elements 

Nodes

: Consistent mass 

: Motor mass 

(a) Link system       (b) Linear Timoshenko beam elements      (c) Bernoulli-Euler beam elements 

FiûX

FiûY
FiûZ

X

Y
Z

Pn
j=i+1 FjX

Pn
j=i+1 FjY

Pn
j=i+1 FjZ

Link i+ 1

：Nodes

Global coordinate

z
y

x
Elemental coordinate

Link i

Fig. 2  Nodal forces acting in a link system with consistent mass distribution 



 
[Tn] is a 6n×6n transformation matrix, which is defined as 
 
[Tn] = [hn][TnGE ].                                                                                                                                            (4) 

 
where [hn] is a correction matrix between the x-y and z-x coordinate systems, which simply inverts the 
signs of the components in the y-axis direction. [Tn

GE] is a transformation matrix between the global and 
elemental coordinates, which is expressed as 
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where φiXx, for example, represents the rotational angle between the X (global) and x (elemental) 
coordinates.  
[Ln] is a 3n×6n matrix related to link length, which is expressed as 
 
[Ln] = [TnÉ ][É

n],                                                                                                                                                     (7) 
 
where [Tn

Λ] is a transformation matrix between each elemental coordinate, and [Λn] is a matrix expressed 
as 
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2. Calculation of kinematics for flexible models  To calculate the inverse dynamics for flexible models, 
information on target trajectories that compensate for the inertial forces acting at the links and the 
stiffnesses of the links is required. Therefore, a solution scheme of kinematics is developed on the basis of 
the FEM. Moreover, it is combined with the parallel solution scheme to handle analyzed models 
comprehensively in a single calculation process.  
When inertia caused by the overall system motion is taken into account, the equation of motion at time 
t+∆t is derived from the principle of virtual work as follows: 
 
[M]f °umgt+Åt+[M]f °udgt+Åt+[C]f _udgt+Åt+[K]fÅudg = fFgt+ÅtÄfRgt,                                             (10) 
 
where [M] is the total mass matrix, [C] is the total damping matrix, [K] is the total stiffness matrix, {F} is 
the external force vector, and {R} is the internal force vector. The vectors f °umg and f °udg denote the 
acceleration vectors for the overall system motion components and material deformation components, 
respectively, f _udg denotes the velocity vector for material deformation components, and {∆ud} is the 
incremental material deformation vector at time t+∆t. By applying Newmark’s β method (integration 
parameter: δ=1/2) as a time integration scheme, the acceleration and velocity vectors are calculated as 
 
f °umgt+Åt =

1

åÅt2
fÅumgÄ

1

åÅt
f _umgtÄ(

1

2å
Ä1)f °umgt

,                                                          
(11a)

 
f °udgt+Åt =

1

åÅt2
fÅudgÄ

1

åÅt
f _udgtÄ(

1

2å
Ä1)f °udgt

,                                                               
(11b)

 
f _umgt+Åt =

1

2åÅt
fÅumgÄ(

1

2å
Ä1)f _umgtÄ(

1Ä 4å
4å

)f °umgtÅt
,                                                         

(11c)
 

f _udgt+Åt =
1

2åÅt
fÅudgÄ(

1

2å
Ä1)f _udgtÄ(

1Ä 4å
4å

)f °udgtÅt
,                                                             

(11d)
 

 
where f _umg is the velocity vector for the overall system motion components and {∆um} is the incremental 
motion vector at time t+∆t. β is another integration parameter and a value of 1/4 is used in the examples. 
Substituting Eq. (11) into Eq. (10) yields 
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By applying {∆um} as the input in a time integration loop of Eq. (12) and using the vectors of Eq. (11) at 
time t, {∆ud} at each time step can be successively obtained. The displacement vector {um} for the overall 
system motion components, and the displacement vector {ud} for the material deformation components are 
calculated incrementally as 
 
fumgt+Åt = fumgt + fÅumg,                                                                                       (13a) 
fudgt+Åt = fudgt + fÅudg.                                                                                        (13b) 
 
The total displacement {u} is obtained by summing both the overall system motion and material 
deformation components as 
 
fugt+Åt = fumgt+Åt+ fudgt+Åt.                                                                                      (14) 
 
Final target trajectories considering the effects of stiffness and damping are obtained using Eq. (14). The 
resultant forces acting on the elements can also be calculated using the obtained displacements.  
 



NUMERICAL EXAMPLES OF INVERSE DYNAMICS CALCULATIONS 
In this section, some numerical examples are shown on various types of link system to confirm the 
applicability and expansibility of the parallel solution scheme. 
 

1. Closed-loop, structure-varying, and multibranch link systems  Although special attention must be 
paid to the number of incremental steps, one can obtain torque curves for a closed-loop link system (see 
Fig. 3(a)), a structure-varying type (see Fig. 3(b)), or even for a multibranch link system (see Fig. 3(c)) 
without revising any part of the numerical algorithm in the parallel solution scheme [6]. This is one of the 
most significant advantages of using the scheme. 
 

2. Flexible link systems  A numerical test is carried out on a 5-joint link system that consists of five 
different stiffness links, as shown in Table 1. Damping is considered in the calculations. In Table 1, α and 
β are Rayleigh’s damping coefficients. An initial trajectory for a rigid-body model is given in Fig. 4(a). 
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Table 1. Link parameters of a five-joint flexible link system 
 

Damping coefficients 
 Link 

length [m] 

Flexural 
stiffness 
[Nm2] 

Link mass 
[kg] 

Extra 
mass [kg] α β 

Link 1 0.200 0.5384 0.021 0.500 0.100 2.0×10-4 
Link 2 0.200 0.4376 0.021 0.200 0.100 2.0×10-4 
Link 3 0.200 0.2917 0.021 0.100 0.100 2.0×10-4 
Link 4 0.200 0.1459 0.021 0.050 0.100 2.0×10-4 
Link 5 0.200 0.02917 0.021 0.010 0.100 2.0×10-4 

 

X [m]

Y [m]

0 0.2 0.4 0.6 0.8

-0.5

0

0.5

1

J1 2 
3 
4 

5 

Time [s]

To
rq

ue
 [N

*m
]

 Joint 1
 Joint 2
 Joint 3
 Joint 4
 Joint 5

0 1 2 3 4 5 6

-0.2

0

0.2

0.4

X [m]

Y [m]

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

Time [s]

To
rq

ue
 [N

*m
]

 Joint 1
 Joint 2
 Joint 3
 Joint 4
 Joint 5

0 1 2 3 4 5 6

-0.2

0

0.2

0.4

Fig. 4  Inverse dynamics calculation of a five-joint flexible link system with different stiffness values 

(a) Initial trajectory     (b) Torque curves for rigid-body model   (c) Trajectory for flexible model obtained by kinematics  
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The same trajectory is used and is substituted directly into the parallel solution scheme to obtain the joint 
torque values shown in Fig. 4(b). A smooth joint torque curve is obtained for the rigid-body model. If 
stiffness must be considered, the initial trajectory is substituted into the kinematics computation, and a new 
trajectory for the flexible model is obtained, as shown in Fig. 4(c). Some bending deformation can be 
observed in the figure. The new trajectory is then substituted into the parallel solution scheme in the same 
manner as that for the rigid-body model, and torque curves for the flexible model are obtained, as shown in 
Fig. 4(d). In contrast to the rigid-body model, vibration can be observed in the torque curve of the flexible 
model owing to the flexural vibration that occurs in the model. It is confirmed that the torque curves 
vibrate along with those of the rigid-body model at the natural frequency of the whole system. The results 
lead us to conclude that the solution scheme of kinematics developed by the FEM can handle systems with 
links of various stiffness values.  
 
APPLICATIONS TO FEEDFORWARD CONTROL 
The parallel solution scheme is implemented in the control system shown in Fig. 5, and it is applied to 
feedforward control experiments on a flexible link system and a robotic arm.  
 

1. Flexible link system  Some feedforward control experiments are carried out on a two-joint flexible link 
system, as shown in Fig. 6, which contains two links made of different materials: Link 1: stainless steel, 
Link 2: acryl (see Table 2 for details). Direct-drive DC motors (Maxon F2260 for Joint 1, RE40 for Joint 2) 
are used at link joints to maximize the effect of the dynamics. Other details of the experimental setup are as 
follows: servo amplifiers: Maxon 4-DC-Q, encoders: Maxon HEDL554, D/A board: Interface PCI-3340, 
encoder board: Interface PCI-6201E, control PC: Pentium III 600 MHz processor, 512 MB memory, OS: 
Windows 2000, and sampling rate: 10 ms. The control torque for feedforward and feedback compensation 
(τFF+FB) is calculated using 
 
úFF+FB = úmotor +úI:D: +úfeedback,                                                                                                            (15) 
 
where 
 
úmotor = J°qd +D _qd + fc.                                                                         (16) 
 
Here, J is the moment of inertia of the motors, D is the viscosity coefficient of the motors, fc is the dynamic 
friction force, τI.D. is the computed inverse dynamics obtained by the parallel solution scheme, and _qd and 
°qd are the target angular velocity and angular acceleration, respectively. D and fc are identified beforehand 
by simple experiments. τfeedback is the proportional-integral (PI) feedback torque, in this case, which is 
obtained using 
 
úfeedback =KP (qd Ä q) +KIÜ(qd Ä q),                                                                 (17) 
 

Fig. 5  Outline of the control system Fig. 6  Two-joint flexible link system 
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where q and qd are the actual angle acquired from the attached encoders and the target angle, respectively. 
KP and KI are the feedback gain for the angle and the integrated value, respectively. Values of 3.5 and 
0.017 are used in the feedforward and feedback control, respectively.  
Sensorless, model-based vibration control is adopted to reduce the vibration of the link head and to verify 
the accuracy of the calculated trajectories and torque values. The general concept of the vibration control 
is to rotate the base joint by a control angle θ, as shown in Fig. 7, at the instant when the link is maximally 
deformed after stopping. The timing of the rotation is determined by predicting the time when the speed of 
the link head becomes zero from the calculated trajectory. The base joint is rotated until the amplitude is 
sufficiently reduced. In this case, the vibration control is adopted only for Joint 2 for simplicity. Joint 1 is 
controlled by the trajectory without considering any oscillating motion.  
The given task is a simple rotational motion, as shown in Fig. 8(a), which stops after 2 s. A trajectory for 
the flexible model with vibration control is obtained as shown in Fig. 8(b), from the kinematics 
computation. The vibration that occurs after the stop is markedly reduced. Figures 9(a) and 9(b) show a 
comparison of the computed and actual torques. The computed torques (τI.D.) are in good agreement with 
the actual control torques using feedforward and feedback torques (τFF+FB) compared with the control 

Table 2. Link parameters of a two-joint flexible link system 
  

Parameter Link 1 Link 2 
Link length [m] 0.25 0.25 

Young’s modulus [GPa] 200 4.38 
Moment of inertia [m4] 2.92×10-12 7.72×10-12

Link mass [kg] 6.83×10-2 6.20×10-3

Extra mass [kg] 5.81×10-1 4.20×10-2

Fig. 7 Control angle for vibration control 
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torques using only feedback torques (τFB). The complicated motion required to restrain vibration is 
realized in the rotational angle (Fig. 10(a)), and the computed location of the link head also agrees well 
with the experimental result (Fig. 10(b)). These results indicate the high accuracy of the trajectories and 
torque values obtained using the parallel solution scheme.  
 

2. Seven-DOF robotic arm system  Finally, some feedforward control experiments using the parallel 
solution scheme are carried out on a robotic arm, as shown in Fig. 11, to verify the scheme’s practicability 
for actual robotic systems. The robotic arm [13] consists of 7-DOF joints actuated using an air cylinder, 
and is very light compared with an arm using 7 DC motors but has sufficient stiffness to act as an 
endoskeleton. The linear motion of the air cylinder is transformed to rotational motion using a screw 
mechanism attached to the inside of the upper arm and forearm. Input torque values are converted to air 
pressure values by a linear relationship. The assumed mass distribution of the mechanism is shown in Fig. 
12, and it is modeled and computed explicitly using the parallel solution scheme considering the center of 
gravity [6]. PID feedback control is adopted, and each feedback gain is fixed to specific values throughout 
the experiments. One of the advantages of adopting the feedforward control is that one can restrain the 
feedback gains to small values. A simple 2-DOF motion is given to Joints 2 and 3, and the control results 
obtained are shown in Fig. 13. The computed torque curves are shown in Fig. 14. Slight delays compared 
with the target motion can be observed in the results, which originate from the mechanical delay caused by 
compressing the air cylinder. However, the positive effects of the feedforward control are apparent, 
particularly at the initial stage and in the overall stability. Note that although the motions are very simple, 
the dynamics of the system is regarded as that of a 7-DOF system, which may be very complicated to 
handle using conventional dynamic equations.  

Fig. 11 Robotic arm with air cylinder used 
 as endoskeleton [13] Fig. 12 Modeling of the robotic arm 
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CONCLUSION 
A completely new solution scheme for calculating the inverse dynamics of robotic systems is described in 
this paper with various numerical examples and experimental results. The scheme derives nodal forces in 
parallel and converts them to a joint torque, and can easily be applied to many types of link system under 
various boundary conditions or with various stiffness values. The basic numerical algorithm of the scheme 
requires no revision for different cases. The simple algorithm enables the scheme to be more easily 
implemented in a program or for its functionality to be enhanced, even for nonexpert users. These 
advantages cannot be realized by conventional schemes based upon generally used dynamic equations. 
The parallel solution scheme may also be used to achieve stability and smoothness in robotic motion 
control. The numerical examples and control results reveal the possibility of using the scheme as a unified 
scheme, independent of the system configuration and physical parameters of link systems.  
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