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Abstract— The main purpose of this study is to deal with a 
sudden change of dynamics in link systems, not by using 
integrated systems of different software, but by using a single 
solution scheme based upon a single theory. An algorithm for 
the general-purpose expression of structural connectivity is 
developed and implemented into the parallel solution scheme, 
which was previously proposed and successively applied to 
the feed-forward control of link mechanisms under various 
boundary conditions. The algorithm expresses the 
connectivity of link members explicitly, regardless of the 
structural complexity. The parallel solution scheme 
calculates the inverse dynamics of link systems with 
equations of motion expressed in the dimension of force. It 
enables us to obtain numerical torque values in parallel by 
using a matrix-form equation separated into terms of 
different parameters. Therefore, the connectivity of link 
members can be expressed explicitly by one of the matrices, 
the member length matrix. We describe the forming process 
of the matrix and verify the validity of the calculated torque 
values, by presenting simple numerical results and 
experimental results for complex systems such as 
multibranch link systems. It is confirmed that a sudden 
structural change of link systems is dealt with only by a 
revision of input data, which makes it highly reliable in fail-
safe systems.  

I. INTRODUCTION  
Recently, demands on motion robots have increased 

greatly, such as that they move more quickly and in more 
complicated ways. Such demands may lead to the 
production of structurally complicated systems, of which 
the dynamic equations will inevitably become difficult for 
general users to derive (see Fig. 1). Generally, the 
dynamic equations are derived by the Newton-Euler 
method or the Lagrangian method, in relative polar 
coordinates and in the dimension of torque. The equations 

supply exact solutions in a short calculation time. 
However, we require a special assumption to derive the 
equations, for closed-loop or other link systems with 
complicated structural connectivity [1][2]. This is due to 
the inclusion of interdependent variables between the 
constituting links in the dynamic equations. Therefore, a 
sudden change of dynamics is generally dealt by an 
integrated system of different algorithms or dynamic 
equations.  

Nakamura and Yamane developed a computational 
algorithm for the inverse and forward dynamics of open 
and closed kinematic chains, which can be applied 
seamlessly against the motions of any rigid link systems 
without switching among algorithms [3]. However, the 
scheme requires the virtual cutting of the kinematic chain 
when applied to closed-loop chains, along with the 
computation of Jacobian matrices. On the other hand, 
Isobe developed a completely new scheme for calculating 
inverse dynamics by using a finite element approach [4]. 
The scheme is named the parallel solution scheme, since it 
computes nodal forces in parallel by using the equations of 
motion expressed in the dimension of force, and converts 
these to torque by using a matrix-form equation separated 
into individual terms of nodal forces, transformation 
between coordinates, and member length. Therefore, the 
scheme can not only deal with open- and closed-loop link 
systems independently, it can also deal seamlessly with 
those that gradually change their forms and dynamics. 
There is also no need to revise the basic numerical 
algorithm of the scheme, regardless of the stiffness of the 
constituting link member, whether it is rigid or flexible [5]. 

In this paper, we describe an algorithm for the general-
purpose expression of structural connectivity, using the 
member length matrix in the parallel solution scheme. The 
matrix contains the member length information in the 
components, and expresses the structural connectivity of 
the link system by the components’ configurations. The 
connectivity between two links relies only upon whether a 
link is mechanically dependent (or supported) on another, 
or vice versa. By using this algorithm, complex systems 
such as multibranch link systems can be expressed 
explicitly, simply by feeding the connectivity data into the 
inverse dynamics computation program. The parallel Figure 1 Cases which are difficult to handle for general users 
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solution scheme with the proposed algorithm is verified by 
comparing a simple numerical result with the exact 
solution, and by carrying out some feed-forward control 
experiments on a structure-varying link system. 

II. PARALLEL SOLUTION SCHEME 

A. Comparison with Schemes Using Dynamic Equations 
Dynamic equations for link systems are generally 

derived by the Newton-Euler method or the Lagrangian 
method. In a summarized expression, the equations are 
written as 

fúg = [M(í)]f°íg+ fV (í; _í)g+ fG(í)g,      (1) 

where fúg  is the torque vector, [M ]  the inertial force 
matrix, fV g  the centrifugal force and Coriolis force term 
vector, and fGg  the gravity force term vector. í, _í, and 
°íwithin the parentheses are the relative variables of the 
angle, the angular velocity and the angular acceleration 
between each link, respectively. All of the parameters in 
the equation relate to each other since they are derived in 
relative polar coordinates and in the dimension of torque. 
Therefore, most parts of the equations must be revised 
when the structural configuration of the link system is 
changed. Furthermore, special treatment must be adopted 
for the derivation of the equations for complex systems 
such as closed-loop or multibranch link systems.   

On the other hand, torque values are calculated by 
using the following equation in the parallel solution 
scheme [4]; 

fúng = [Ln][Tn]fPng,           (2) 

where fúng is the torque vector, fPng the vector related to 
nodal forces, [Tn]  the transformation matrix between 
global and elemental coordinates, and [Ln]  the member 
length matrix. The suffix ‘n’ on the upright indicates the 
total number of links. The nodal forces are evaluated at an 
absolute Cartesian coordinate, and in the dimension of 
force. The equation is completely separated into terms of 
different parameters, and each matrix expresses the essence 
of the modeled link system such as member lengths and 
connectivity, initial and transition of coordinates and joint 
angles, and amount of applied forces at each joint. 
Therefore, it has high expansibility and flexibility, and it 
can be applied to complex link systems without difficulty.  

An incremental nodal force vector fÅfg, required for 
the link system in motion between time t  and t+Åt , is 
derived by the following equation [4]; 

fÅfg = fRgt Ä fFgt+

[M ](
1

åÅt2
fÅug Ä 1

åÅt
f _ugt Ä ( 1

2å
Ä 1)f°ugt),    

(3)
 

where [M ] is the total mass matrix, fFg the external force 
vector, fRg the internal force vector, fÅug the incremental 
displacement vector, f _ug  the velocity vector, and f°ug  the 
acceleration vector. β  is the integral parameter for 

Newmark’s β method [6], a widely used time integration 
scheme. The operation distance between each incremental 
step calculated from a target trajectory is used as an input 
for fÅug. The velocity and acceleration vectors can also be 
given directly as input data, however, we used Newmark's
βmethod (δ=1/2, β=1/4) for calculating the values in this 
paper. The values of the internal force vector fRg will all 
actually become zero, since the consideration of the 
deformation of link members in the inverse dynamics 
calculation process is not required. The external vector 
includes information such as dead loads and other 
additional forces acting at nodal points. Each 
corresponding term in the incremental nodal force vector is 
then substituted into (2) to constitute the vector fPng . 
Although the scheme requires incremental calculation, it 
has been confirmed in previous works that the calculation 
time in actual control is suppressed to a practical value. 
Further information regarding the calculation process can 
be found in references [4] and [5]. 

B. Expressing Structural Connectivity by Member 
Length Matrix 
The member length matrix [Ln]  in (2) contains 

components in the dimension of length, which play roles in 
converting the dimension from force to torque. Also, the 
configuration in the matrix expresses the structural 
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Figure 2 Various system configurations 
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connectivity of the link system. For example, the structural 
connectivity of an open-loop link system constituted with a 
link members, as shown in Fig. 2(a), can be expressed by 
an upper triangular matrix as follows: 

Ç
La

É
=

266664
L1 L2 ÅÅÅ LaÄ1 La

L2 ÅÅÅ LaÄ1 La
. . .

...
...

0 LaÄ1 La
La

377775
,               

(4)

 

where each component Li(i = 1;ÅÅÅ; a) is a member length 
matrix for link No. i , containing components on member 
length, distance between center of gravity and nodal points, 
etc [4]. In the case of dealing with a closed-loop link 
system as shown in Fig. 2(b), where a1, a2, … , am links (a1 

+ a2 + … + am = n) are connected, the member length 
matrix can be expressed as follows: 

Ç
Ln

É
=

266664
La1

La2 0
. . .

0 LamÄ 1

Lam

377775
,         

(5)

 

where La1 ; La2 ;ÅÅÅ; Lam  are each of the upper triangular 
matrices expressed as (4). Namely, serial structures to 
which the torque values should be added, are expressed as 
(4). Parallel structures to which the values should not be 
added, are expressed by a matrix with the upper triangular 
matrices placed on the diagonal, as in (5). For another 
example, the multibranch link system shown in Fig. 2(c), 
where a b-link open-loop system branches from the i-th 
joint in an a-link system, can be expressed as follows: 

Ç
Ln

É
=

26666666666664

La1 ÅÅÅ Lai ÅÅÅ Laa Lb1 ÅÅÅ Lbb
. . .

...
...

...
...

Lai ÅÅÅ Laa Lb1 ÅÅÅ Lbb
. . .

... 0
Laa

Lb1 ÅÅÅ Lbb

0
. . .

...
Lbb

37777777777775
. 

(6)
 

Basically, the matrix consists of two independent upper 
triangular matrices that indicate two open-loop links. To 
add up the torque values in the branch to the supporting 
link, the first row components of the b-link system are all 
duplicated into the i-th row (which indicates a branching 
joint) and the former rows.  

The flow chart of the construction algorithm of the 
member length matrix is shown in Fig. 3. A supported link 
and a supporting link between two connected links are 
indicated as the child link and the mother link, respectively. 
The flow is summarized as follows. 

1) Starting from link No. n, place the member length     
matrix of the child link (link No. i) into the i -th row, 
i -th column of the total matrix. 

2) Add all the components on the i -th row (k=1, … , n) 
to the j -th row. If the mother link (link No. j) of the 
child link (link No. i) is the base, skip this step. 

3) Repeat steps 1) and 2) until link No. 1 is reached. 
By using this flow, various types of system 

configurations can be expressed explicitly and 
automatically. However, the member length matrix only 
expresses the structural connectivity of link systems; the 

Figure 4 Estimation of torque curves 

(a) Dynamic equations (b) Parallel solution scheme 

Figure 3 Flow chart of construction algorithm of  
member length matrix 
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exchanges of forces at passive joints are handled in the 
vector fPng , if necessary. Examples showing structural 
connectivity of link systems are described in the next 
chapter.  
  

C. Numerical Example 
In this section, the joint torque curves of a simple 

multibranch link system (length of each link: 0.4 m; link 
weight: 0.215 kg; center of gravity at midpoint; mass at the 
tip: 0.5 kg) are calculated and compared in two different 
ways; (a) dynamic equations derived by using the 
Lagrangian method, and (b) the parallel solution scheme. A 
0.5 π  rad rotational motion in 1.0 s is given in the 
horizontal plane.  Fig. 4 shows the model and comparison 

of the obtained torque curves. As the branching joint is 
assumed to have two independent shafts (Joints 2 and 3), 
two torque values are obtained at the joint. As shown in the 
figure, the torque curves obtained by the two schemes are 
in good agreement with one another. 

It is not impossible to derive the dynamic equations for 
more complex systems, although it is still difficult. 
However, the complexity can be dealt with only by 
revising the structural connectivity data for the parallel 
solution scheme. 

III. CONTROL EXPERIMENTS ON MULTIBRANCH LINK 
SYSTEMS 

Some control experiments are carried out on a 
structure-varying link system as shown in Fig. 5, in order 

Figure 5 Structure-varying link system 

(b) 5-joint multibranch link system 

Joint 1

2

3

4

5

Mass

(c) 5-joint multibranch link system with 
passive joint at different position 

Removable 
branch link 

Passive 
joint 

(a) 4-joint closed-loop link system 

Passive 
joint 

Figure 6 Structural connectivity of structure-varying link system 
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 the actual angle and angular velocity 
 attached encoders, respectively. KP, KI 
dback gain for the angle, the integrated 
gular velocity, respectively. These are 
lues throughout the experiments in order 
e effect of feed-forward torque. The 
tor dynamics and feedback gain are 

 is controlled, first as a 4-joint closed-
and then it is reconstructed to a 5-joint 
ystem to carry out the control, and then 
s passive joint at a different position, to 
e routine. Fig. 6 shows the structural 
 structure-varying link system, which is 
uction of the member length matrix. A 
row indicate the mechanical dependency 
bers. For example, Link 3 and Link 5 are 
 (or supported by) Link 2 in Fig. 6(b), 
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ed to nodal forces, fPng. Fig. 7 shows 
urves obtained by the parallel solution 
second swaying motion as shown in the 
to each system configuration. Torque 

en each figure, due to the change of the 
ystem. In particular, we can confirm a 

reduction in maximum torque values when a passive joint 
is placed near the branching joint and the mass. 

Fig. 8 shows the control results for Joint 1. It is evident 
that the feed-forward torque has a good effect on tracking 
against the target trajectory, compared to the results 
obtained only with feedback values. The performance is 
all consistently and similarly improved, though the 
dynamics of the link system is drastically changed. These 
results confirm the validity of the torque values calculated 
by the parallel solution scheme.  

Figure 7 Joint torque curves obtained by the parallel solution scheme
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IV. CONLUDING REMARKS 
A matrix-form equation for calculating torque values in 

the parallel solution scheme is separated into terms of 
different parameters. The structural connectivity of link 
systems, therefore, can be expressed explicitly by one of 
the matrices, the member length matrix. Its construction 
process is easy to implement in a program, and has high 
expansibility and flexibility. The solution scheme may 
demonstrate its flexibility in a fail-safe system, in such 
cases where a sudden structural change of link systems 
may occur.  

One of the other terms in the matrix-form equation, the 
vector related to nodal forces, contains values with both 
static and dynamic effects. Studies on force control and 
inverse dynamics calculations for flexible manipulators, 
which can be developed by using this feature, are in 
progress.  
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