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Abstract. In this paper, we describe a new finite element code, which can be efficiently 
applied to structural collapse analyses of framed structures under impact loads. The code is 
developed by using the ASI-Gauss technique, a modified version of the formerly developed 
Adaptively Shifted Integration (ASI) technique for the linear Timoshenko beam element, 
which computes highly accurate elasto-plastic solutions even with the minimum number of 
elements per member. The ASI-Gauss technique gains still higher accuracy especially in 
elastic range, by placing the numerical integration points of the two consecutive elements 
forming an elastically deformed member in such a way that stresses and strains are evaluated 
at the Gaussian integration points of the two-element member. Moreover, the technique can 
be used to express member fracture, by shifting the numerical integration point to an 
appropriate position and by releasing the resultant forces in the element simultaneously. An 
impact phenomenon between structures is expressed by means of contacts between the 
elements involved, and the elemental contact algorithm is verified from the point of 
conservation of energy. Impact analyses considering member fracture with different sets of 
parameters are performed on a high-rise framed structure collided by a small aircraft. From 
the results obtained, we can observe propagation of impact loads and shock waves in the 
framed structure. Also, the results indicate that the larger the pre-impact kinetic energy, the 
larger the impact damage. In the cases of the same pre-impact kinetic energy, slight 
differences are observed when the parameters of the aircraft are varied. Moreover, soon after 
impact, tensile stresses are observed in the columns that were compressed by dead loads 
before impact. 
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1 INTRODUCTION 
The progressive collapse of World Trade Center towers in New York, USA revealed the 

structural vulnerability of tall steel buildings to the impact of a fast moving object. Technical 
investigations are necessary to clarify the technical conditions that contributed to the 
progressive collapse and to improve the ways buildings are designed, constructed, maintained 
and used. Generally, numerical simulation is considered to be one of the means to investigate 
such problems. 

Advancements in computational technology have helped the development of various 
numerical analysis methods and some of them have been applied to analyze dynamic 
behaviors with strong nonlinearities and discontinuities. The Distinct Element Method (DEM) 
[1] follows the discontinuum approach, that is, the analytical model is formed by a number of 
distinct interacting general-shaped elements to simulate the perfectly discrete behavior. The 
Discontinuous Deformation Analysis (DDA) [2] models a discontinuous material as a system 
of individually deformable blocks that move independently without interpenetration. DDA is 
known to be able to cope with large deformations and strong discontinuities. The Applied 
Element Method (AEM) [3], which can predict crack initiation and propagation in the 
material and can also follow the total behavior from zero loading to complete collapse, has 
also been developed and applied to detailed nonlinear analysis of reinforced concrete 
structures. However, the above-mentioned discrete numerical methods are computationally 
intensive and need detailed modeling. Therefore, they are suitable only for detailed analyses 
of either two-dimensional or small three-dimensional models. 

On the other hand, the Finite Element Method (FEM), which is based on continuum 
material equations, has been successfully applied to a wide range of engineering problems 
including structural analyses of large-scale structures. However, the FEM is generally limited 
to analyses of relatively small displacements and it needs complicated modifications to apply 
to strongly nonlinear and discontinuous problems. The main objective of this study is to 
develop a finite element code, which can simulate dynamic behaviors with strong 
nonlinearities and discontinuities and is efficiently applicable to impact collapse analyses of 
framed structures. 

Toi and Isobe developed the Adaptively Shifted Integration (ASI) technique [4,5] for the 
linear Timoshenko beam and the Euler-Bernoulli beam elements, which can be easily 
implemented into the existing finite element codes. In this technique, the numerical 
integration point is shifted immediately after the occurrence of a fully plastic section in the 
element so that a plastic hinge is formed exactly at that section. As a result, the ASI technique 
gives more precise elasto-plastic solutions than the conventional schemes, and has become 
able to simulate dynamic behaviors with strong nonlinearities by using only a small number 
of elements for a member. Structurally discontinuous problems have also become easily 
handled, by shifting the numerical integration point of the linear Timoshenko beam element to 
an appropriate position, and by releasing the resultant forces in the element simultaneously 
[6,7]. However, when the number of elements per member is very small, it still lacks accuracy 
in the elastic range compared to the converged solution, due to the low-degree displacement 
function of the linear Timoshenko beam element.  
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In this study, the ASI technique using the linear Timoshenko beam element is modified 
into the ASI-Gauss technique to improve its accuracy especially in elastic range. It is handled 
by placing the numerical integration points of the two consecutive elements forming an 
elastically deformed member in such a way that stresses and strains are evaluated at the 
Gaussian integration points of the two-element member, where the accuracy of bending 
deformation is mathematically guaranteed for two-point integration. The numerical 
integration points are adaptively shifted according to the change in material property (elasto-
plasticity) of the member. The validity of the ASI-Gauss technique is verified, in this paper, 
by comparing with the ASI technique and the conventional scheme. The impact phenomenon 
between structures is expressed by means of contacts between the elements involved, and the 
elemental contact algorithm is verified from the point of conservation of energy. Generally, it 
is difficult to determine the loads resulted in the structures due to an impact, and applying 
impact loads to an analytical model in the form of nodal forces may not well simulate the 
impact phenomenon. But by using the elemental contact algorithm, the phenomenon can be 
suitably expressed even when the parameters for the colliding structure are varied. Dynamic 
collapse analyses considering member fracture and elemental contact are performed to 
simulate the impact of a small aircraft into a ten-storied steel framed structure, and 
observations are made to evaluate the influence of mass, velocity and size of the aircraft on 
the impact damage. 

2 METHODS 
In this section, the ASI technique using the linear Timoshenko beam element is 

summarized. It is followed by the explanation on the newly proposed ASI-Gauss technique, 
and the algorithms considering member fracture and elemental contact. 

2.1 Adaptively Shifted Integration (ASI) technique 
Elasto-plastic analyses of framed structures using the linear Timoshenko beam element are 

based on the following incremental form of the principle of virtual work: 

0}{}{}{}{
2/

2/
=∆∆−∆∆∫− fudz TL

L

T δσεδδδ Ｗ＝Ｖ－                              (1) 

where V and W are the internal work and the external work, {∆ε}, {∆σ}, {∆u}, and {∆f} are 
the generalized strain increment vector, the generalized stress (resultant force) increment 

Figure 1: Definitions of local coordinates and displacements. 
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vector, the nodal displacement increment vector and the external force increment vector, 
respectively. The symbols δ and ∆ denote variation and increment. The local coordinates, 
nodal numbers and displacement components (u, v, w, θx, θy, θz) are shown in Fig.1.  

The relation between the generalized strain increment and nodal displacement increment 
vectors are given by the following equation: 

})]{([)}({ usBr ∆=∆ε                                                    (2) 

where [B(s)] is the generalized strain-nodal displacement matrix. s is the location of the 
numerical integration point and r the location where stresses and strains are actually evaluated. 
We refer r as the stress evaluation point later in this paper. s is a non-dimensional quantity, 
which is defined as z/(L/2) where L is the length of the element. s takes a value between –1 
and 1. It should be noted here that the linear Timoshenko beam element uses one-point 
integration to avoid shear locking. 

When the element behaves elastically, the relation between resultant force increment 
vector and generalized strain increment vector is given by the following equation: 

)}({)]([)}({ rrDr e εσ ∆=∆                                                (3) 

where [De] is the stress-strain matrix for elastic deformation. Substitution of Eqs. (2) and (3) 
into Eq. (1) leads to the following form of elemental stiffness matrix: 

)]([)]([)]([][ sBrDsBLK e
T=                                             (4) 

In the ASI technique, numerical integration points are shifted immediately after the 
formation of a fully plastic section in the element in order to form a plastic hinge exactly at 
that section. When a plastic hinge is judged to be unloaded, the corresponding numerical 
integration point is shifted back to its normal position. Here, the normal position means the 
location where the numerical integration point is placed when the element acts elastically. 

Figure 2 shows a linear Timoshenko beam element and its physical equivalence to a rigid-
body-spring-model (RBSM). As shown in the figure, the relationship between the locations of 
the numerical integration point and the stress evaluation point where a plastic hinge is actually 
formed is expressed as follows: 

11 sr −=                                                                (5) 

When the entire region of an element behaves elastically, the numerical integration point is 
placed at the midpoint of the element (s1=0) which gives r1=0 from Eq. (5) in this case. The 
elemental stiffness matrix for the element, the generalized strain increment vector and the 
resultant force increment are calculated as follows: 

Figure 2: Linear Timoshenko beam element and its physical equivalent. 
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)]0()][0([)]0([][ BDBLK e
T=                                            (6a) 

})]{0([)}0({ uB ∆=∆ε                                                 (6b) 
)}0()]{0([)}0({ εσ ∆=∆ eD                                             (6c) 

The resultant forces calculated from Eq. (6c) are physically those at the midpoint of the 
element.  

According to the elementary beam theory, the relations between the bending moments and 
shear forces are given as follows: 

dz
dM

V y
x −=                                                          (7a) 

dz
dMV x

y −=                                                          (7b) 

Here, Mx and My are the bending moments around x- and y-axes while Vx and Vy are the 
shear forces along x- and y- axes. Thus the distributions of the bending moment increments in 
an elastically deformed element are determined by the following approximations: 

2
)0()0()( LsVMsM yxx ∆−∆=∆                                        (8a) 

2
)0()0()( LsVMsM xyy ∆−∆=∆                                       (8b) 

The above equations show that the bending moments are subject to a linear change in an 
element and are likely to take the maximum value on either ends (s=±1). As other resultant 
forces have constant values in the element, a fully-plastic state can be determined with an 
yield function by comparing the calculated distributions from Eqs. (8).  

After the formation of a fully plastic section, the numerical integration point is shifted 
immediately to a new point (s1= −r1). For instance, if a fully plastic section occurs at the right 
end of an element (r1=1), the numerical integration point is shifted to the left end (s1= −1) and 
vice versa. In this case, the elemental stiffness matrix, the generalized strain and resultant 
force increment vectors are given as follows: 

)]([)]([)]([][ 111 sBrDsBLK p
T=                                          (9a) 

})]{([)}({ 11 usBr ∆=∆ε                                                (9b) 
)}()]{([)}({ 111 rrDr p εσ ∆=∆                                            (9c) 

Here, [Dp] is the stress-strain matrix for plastic deformation. It is determined by the plastic 
flow theory using the following form of yield function: 

01))(( =−rf y σ                                                      (10) 
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2.2 ASI-Gauss technique 
In this paper, we propose the ASI-Gauss technique for elasto-plastic collapse analyses of 

framed structures using the linear Timoshenko beam element. As in the ASI technique, the 
numerical integration point is shifted immediately after the formation of a plastic hinge and it 
is shifted back to its normal position when the element is unloaded. The main difference 
between the ASI and the ASI-Gauss techniques lies in their normal positions of the numerical 
integration points. 

The relationship between the locations of the numerical integration point and the stress 
evaluation point is expressed as follows: 

gg sr −=                                                            (11) 

When the entire region of an element behaves elastically, the numerical integration point is 
located at (s1=sg). As shown in Fig.3, the normal position of the numerical integration point in 
the ASI-Gauss technique is sg=1−(2/√3) and the stress evaluation point is rg= −sg = −1+(2/√3). 
The two stress evaluation points coincide with Gaussian integration points of the member. 
This means that stresses and strains are evaluated at Gaussian integration points when the 
element behaves elastically. Gaussian integration points are known to be optimal for two-
point integration and the accuracy of bending deformation is mathematically guaranteed [8]. 
In this case, the elemental stiffness matrix, the generalized strain and resultant force increment 
vectors are given as follows: 

)]([)]([)]([][ gge
T

g sBrDsBLK =                                        (12a) 
})]{([)}({ usBr gg ∆=∆ε                                               (12b) 

)}()]{([)}({ ggeg rrDr εσ ∆=∆                                           (12c) 

The distributions of the bending moment increments in an elastically deformed element are 
determined by the following approximations: 

)(
2

)()()( ggygxx ssLsVsMsM +∆−∆=∆                        (13a) 

Figure 3: Locations of numerical integration and stress evaluation points in ASI-Gauss technique. 
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2

)()()( ggxgyy ssLsVsMsM +∆−∆=∆                        (13b) 

Immediately after the occurrence of a fully plastic section, the numerical integration point 
is shifted to a new point (s1= −r1) as in the ASI technique. For instance, if a fully plastic 
section occurs at the right end of an element (r1=1), the numerical integration point is shifted 
to the left end (s1= −1) and vice versa. The elemental stiffness matrix, the generalized strain 
vector and resultant force increment vector are given by Eqs. (9a), (9b) and (9c). It is to be 
noted here, that in this case, the numerical integration point of the adjacent element forming 
the same member is shifted back to the midpoint of the element where its accuracy is 
guaranteed against one-point integration. If the plastic hinge is judged to be unloaded, both 
numerical integration points in the two-element member are, again, shifted to the locations 
according to Fig.3. In other words, the locations of numerical integration points are adaptively 
shifted according to the change in material property (elasto-plasticity) of the member.  

The yield function assumed in this study is expressed by the following equation: 
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Here, Mx, My, N and Mz are the bending moments around x- and y- axes, the axial force and 
the torsional moment, respectively. Those with the subscript 0 are the values that cause a fully 
plastic section in an element when they act on the cross-section independently. The effect of 
shear forces is neglected in the yield function. 

The dynamic collapse analysis is made possible by adding inertial force terms to the quasi-
static computational procedure. That is, the following equation for the complete system is 
integrated by an appropriate time integration scheme: 

ttttttt RFuKuCuM }{}{}]{[}]{[}]{[ −=∆++ ∆+∆+∆+ &&&                               (15) 

Here, [M] is the total mass matrix, [C] the total damping matrix, [K] the total stiffness matrix, 
{F}t+∆t the nodal external force increment vector at t+∆t, {R}t the nodal internal force 
increment vector at t. ttu ∆+}{ && , ttu ∆+}{ &  and }{ u∆  are the nodal acceleration, velocity and 
displacement increment vector at t+∆t. In this study, we use consistent mass as an elemental 
mass matrix which is assumed to be unaffected by the shifting of numerical integration points. 
Newmark’s β method [9] is used as a numerical integration scheme for Eq. (15), and 
conjugate gradient (CG) method is used as a solver to reduce the need of memory resources. 

2.3 Algorithm considering member fracture 
A plastic hinge is likely to occur before it develops to a member fracture, and the plastic 

hinge is expressed by shifting the numerical integration point to the opposite end of the fully-
plastic section. Accordingly, the numerical integration point of the adjacent element forming 
the same member is shifted back to its midpoint where it is appropriate for one-point 
integration. Figure 4 shows the locations of numerical integration points for each stage in the 
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ASI-Gauss technique. A member fracture is determined, in this study, by examining axial and 
bending strains in two elements forming a member, using the following conditions.  
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Here, κx, κy, εz, κfx, κfy and εfz are the bending strains around x- and y- axes, the axial strain 
and the critical values for each strain, respectively. When fracture is judged to occur, a new 
node is created at the fractured section and the numerical integration point of the element is 
shifted back to its midpoint. Resultant forces exerting at the fractured section are released 
instantly at the next step after fracture has occurred. The nodal mass is equally redistributed at 
each separated node after the step.  

2.4 Algorithm considering elemental contact 
Generally, it is difficult to determine the loads resulted in the structures due to an impact. 

Applying impact loads to the model in the form of nodal forces may not well simulate the 
impact phenomenon. Thus, the impact phenomenon is expressed, in this paper, by means of 
contact between the elements involved. Elemental contact algorithm is also useful to simulate 
fractured elements colliding with other elements, and to consider the variation of parameters 
of the colliding structure. 

Contact determination is done by examining the following two factors: (i) the distance 
between the approaching element and the another one, (ii) the condition under which all four 
nodal points lie on the same plane. Figure 5 shows the geometric relation in the contact 
determination. Using the coordinates of the nodal points of the colliding element; 
A1(xc1,yc1,zc1), A2(xc2,yc2,zc2), and another element Ei; Bi1(xi1,yi1,zi1), Bi2(xi2,yi2,zi2), the 
condition under which all four nodal points lie on the same plane can be expressed as follows: 

Figure 4: ASI-Gauss technique dealing with member fracture. 
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When two elements lie on the same plane and exist within a specific distance from each 
other as calculated by the following equation, they are assumed to be in contact: 

( )icliiii LLCBABABABA +≤+++ 22122111                       (18) 

Here, 11 iBA , 21 iBA , 12 iBA , 22 iBA  are the distances between the four nodal points and Lc, Li the 
lengths of colliding element Ec and the element Ei, respectively. Cl is the coefficient 
concerning contact length and a value of 1.8 is used throughout this paper. 

For the elements that do not lie on the same plane but exist within a certain distance 
specified by Eq. (18), another condition is given as expressed by the following equation, 
which assumes that the elements nearly form a plane: 

fCzyxf ≤),,(                                                         (19) 

Cf is a coefficient expressing the degree of planarity, which is fixed by considering the 

Figure 5: Geometric relation in the determination of elemental contact. 
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sectional properties of constituent members. In this paper, a value of 3.0x10-4 m3 is used for Cf. 
Contact determination is skipped for the elements that are not approaching each other. When 
two elements are determined to be in contact, they are bound with a total of four gap elements 
as shown in Fig.6. Gap elements are assumed to have the same geometric and material 
properties as the elements in contact. In the case of contact, impact force is delivered through 
these gap elements to the connecting elements. After certain time of contact, the gap elements 
are removed from the analytical model. In this paper, the binding time is set to 0.5 ms. It is 
assumed that no energy loss takes place during the impact. 

3 NUMERICAL EXAMPLES 
In this section, the results of the elasto-plastic collapse analyses using a simple space frame, 

which is loaded both statically and dynamically, are discussed. In the analyses, we use the 
following three schemes in order to verify the accuracy of the newly proposed ASI-Gauss 
technique: (a) conventional scheme in which the numerical integration point of each element 
is fixed at its midpoint; (b) the ASI technique; (c) the ASI-Gauss technique. Moreover, the 
algorithm considering elemental contact is verified from the point of conservation of energy 
by carrying out an impact analysis of a two-beam model. 

3.1 Elasto-plastic collapse analysis of a space frame 
Figure 7 shows the analyzed space frame with its dimensions, geometric properties and 

material constants. As shown in the figure, the frame is fixed at its lower ends and a static 
horizontal load is applied to its upper left corner. Members are subdivided into elements 
according to the numbers specified in the legends of the figures. As large deformations are not 
expected, the total Lagrangian formulation (TLF) is used in the analyses. 

Figure 8 shows the results of the elasto-plastic analyses under static loading. As for the 
conventional scheme, convergence is extremely slow. The ASI technique shows better 
convergence, since the numerical integration points are shifted to form plastic hinges at 
appropriate locations. However, it still shows slow convergence in the elastic range, due to the 
low-degree displacement function of the element. On the other hand, the ASI-Gauss technique 
shows that just two-element modeling is needed to obtain the converged solution in the elasto-
plastic analysis.  

Figure 7: Analyzed space frame model. 
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Figure 8: Elasto-plastic collapse analysis. 
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(b) ASI technique 
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(c) ASI-Gauss technique 
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Figure 9: Elasto-plastic response analysis. 
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3.2 Elasto-plastic response analysis of a space frame 

In the analyses subjected under dynamic loading, the time increment ∆t is set to 0.05 ms 
and the same model shown in Fig.7 is used. A step load of 12 kN is applied for a total of 100 
steps (5 ms). Damping effect is not considered in the analysis. 

Figure 9 shows the results of the elasto-plastic response analyses under dynamic loading. 
As in the analyses described in the previous section, the conventional scheme shows very 
slow convergence and at least sixteen-element modeling is necessary to obtain the converged 
solution in the analysis. The ASI technique gives comparatively better results than the 
conventional scheme. However, when it comes to the model that uses only two elements per 
member, poor convergence is seen and the vibration mode is much different from that of the 
converged solution. On the other hand, the ASI-Gauss technique shows very fast convergence 
in the result and nearly converged solutions are obtained even when the number of elements 
per member is two.  

From the above analyses, it is confirmed that the ASI-Gauss technique is an efficient 
method for analyses of frame structures both in elastic and plastic range, and even the two-
element modeling is sufficient to acquire the results with high accuracy and reliability. 

3.3 Impact analysis of a simple two-beam model 
In this section, impact phenomenon of two beams is simulated to verify the creditability of 

the elemental contact algorithm. The analyzed model, its geometrical properties and material 
constants are shown in Fig.10. One of the beams is fixed at its both ends while the other one 
moves freely. Initial velocity of 50 m/s is applied to the free beam. The beams are modeled 
with two elements per each member. The ASI-Gauss technique is applied, and the updated 
Lagrangian formulation (ULF) is used since large deformations are expected in the analysis. 
Damping effect is not considered in the analysis. The time increment ∆t is set to 10 µs. The 
calculation is done for a total of 3000 steps (0.03 s). 

Figure 10: Analyzed two-beam model. 
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Figure 11 shows the sum of kinetic and potential energies, strain energy and the total of all 
three for the whole model. Energies for both the colliding and the fixed beams constituted by 
a total of four elements are calculated by using the following equations: 
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+ρ=
4
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2
2i

2
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i vv
2
l
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2
1KE                                          (20a) 

( )∑
=

+ρ=
4

1i
2i1i

i hhg
2
l

APE                                            (20b) 

{ }{ }∑
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iii l

2
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Here, KE, PE and SE stand for kinetic energy, potential energy and strain energy, respectively. 
{σi},{εi}, hi, li represent the resultant force vector, the generalized strain vector, z coordinates 
and the length of the element Ei (i=1,2,3,4). Subscripts 1 and 2 denote the nodal points of the 
corresponding element. 

As seen from the figure, kinetic and potential energies occupy all of the total energy before 
the impact takes place. After the impact, both beams deflect and vibrate as seen in Fig.12. As 
a consequence, the strain energy is stored up in the beams and the sum of the other two 

Figure 12: Impact analysis of a simple two-beam model. 
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Figure 11: Kinetic, potential and strain energies in the two-beam model. 
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decreases. The main reason for the fluctuations seen after the impact is considered to be the 
occurrence of longitudinal and bending waves. However, the total energy remains almost 
constant, and the elemental contact algorithm used in this study is considered to be 
sufficiently reliable. 

4 STRUCTURAL COLLAPSE ANALYSIS OF FRAMED STRUCTURES UNDER 
IMPACT LOADS 

In this section, dynamic collapse analyses are performed using the ASI-Gauss technique to 
simulate the impact of a small aircraft into a ten-storied steel framed structure. A total of four 
cases are analyzed using different values for three parameters: cruise speed, size and weight 

Figure 13: Analyzed ten-storied steel framed structure and the aircraft. 
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of the aircraft. Details of the analyzed model, propagation of impact loads, response of the 
structures and the extent of impact damage are discussed in this section. 

4.1 Outline of the analyzed model 
Figure 13 shows the analyzed ten-storied framed structure and the aircraft. Both structures 

are modeled by using two elements per each member. The model contains 1698 elements and 
7308 degrees of freedom. The gap elements, which bind the elements in contact for a certain 
period of time, are assumed to have the same geometrical and material properties as the 
elements forming the aircraft. The critical values for bending strain and axial strain are set to 
κfx=κfy=0.04 and εfz=0.3 in these analyses. 

The weight of the floor system is considered and nearly twenty times of the own weight of 
the skeletal structure is applied as dead loads. The ten-storied framed structure is fixed at its 
lower ends while none of the element is fixed in the aircraft model. It is assumed that the total 
weight of the aircraft is uniformly distributed in its elements. Initial velocity is applied to the 
aircraft with zero degree of inclination from the horizon.  

4.2 Parameters set in the analyses 
A total of four analyses are performed using different values for cruise speed, size and 

weight of the aircraft. The combinations of these parameters are shown in Table 1. The 
parameters are selected to fix the pre-impact kinetic energy values for Cases I and IV, Cases 
II and III to be the same. In all the four analyses, the ASI-Gauss technique with the linear 
Timoshenko beam element is used and member fracture and elemental contact are both 
considered. Damping effect is not considered in all analyses. The updated Lagrangian 
formulation (ULF) is used to handle large deformations of the elements. The Conjugate 
Gradient (CG) method is used as the solver to reduce the need for memory resources. For 
Newmark’s β method [9], 1/6 to 1/4 is the commonly used range for β. However, it is known 
that it becomes less precise but more stable with a value of β between 1/4 and 1/2. Since 
strongly nonlinear and discontinuous behaviors of the problem in this study cause instability 
in calculations, we used a value of 0.4 for β. The time increment ∆t is set to 10 µs. The 
calculation is done for a total of 35000 steps (0.35 s) for each case. The calculation for each 
case takes approximately 20 CPU hours with a personal computer (2.4 GHz CPU, 256 MB 
RAM). 

4.3 Structural collapse analysis of the ten-storied framed structure under impact loads 
Figure 14 shows the results of the first analysis (Case I). A total of six colors are used to 

Case No. Cruise speed [kmp
Case I 440 
Case II 311 
Case III 440 
Case IV 440 
Table 1: Parameters of the aircraft 
h] Size Lc [m] Weight [kg] Pre-impact kinetic energy [J] 

15 60000 448 x106 
15 60000 224 x106 
15 30000 224 x106 
12 60000 448 x106 
15 
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Figure 14: Impact analysis of a ten-storied framed structure collided by a small aircraft (Case 1). 
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demonstrate the tendency of the elements to yield or fracture. The numbers in the color palette 
indicate the values of fy in Eq. (14). Red color (fy =1.0) means a plastic hinge is formed within 
the element and black color is used for fractured elements.  

Propagation of impact loads can be confirmed by observing the spread of colors in the 
figure. Immediately after the impact, red color propagates into the structures from the point of 

Figure 15: Impact damage to the ten-storied framed structure (only the upper five floors are shown and  
fractured elements are excluded). 

(a) Case I 
Cruise speed=440kmph, Lc =15m, Weight=60000kg 

Pre-impact kinetic energy = 448x106J 
Number of fractured members in framed structure=10 

(b) Case II 
Cruise speed=311kmph, Lc =15m, Weight=60000kg 

Pre-impact kinetic energy = 224 x106J 
Number of fractured members in framed structure =2 

(d) Case IV 
Cruise speed=440kmph,Lc =12m, Weight=60000kg 

Pre-impact kinetic energy = 448x106J 
Number of fractured members in framed structure =16 

(c) Case III 
Cruise speed=440kmph,Lc =15m, Weight=30000kg 

Pre-impact kinetic energy = 224x106J 
Number of fractured members in framed structure =5 
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impact. The elements near the area of impact turn to black, that is, they start to fracture. 
Moreover, it is seen that the colors travel down the columns and move backwards very fast. 
This phenomenon is seen mainly in the columns and considered as the propagation of shock 
waves. Red-colored elements are temporarily found even in the lowest floor, and this means 
that even the lowest floor is affected, to some extent, by the impact. 

Figures 15(a) to 15(d) show the extent of damage to the steel framed structure for all four 
cases. In order to show the damaged areas clearly, only the upper five floors are plotted and 
the fractured elements are excluded. If we focus on Case I (Fig.15(a)) and II (Fig.15(b)), the 
impact damage is seen larger in Case I in which the cruise speed of the aircraft is larger (and 
so is the pre-impact kinetic energy), and most parts of the aircraft penetrate the framed 
structure. Although the pre-impact kinetic energy of Case II and III (Fig.15(c)) are the same, 
the results show a slight difference between the damage patterns. If we compare the results 
between Case I and IV (Fig.15(d)), where the only difference between the two cases are the 
width of the aircraft, we can see that the shorter the width, the deeper the penetration. In Case 
IV, most of the inner columns are cut off, however, the total deformation of the framed 
structure is observed slightly smaller than in Case I. This result can be interpreted in such a 
way that the size of the aircraft has a strong influence on the damage patterns. Moreover, soon 
after impact in Case I, tensile stresses are observed in the columns that had been compressed 
by gravity loads before impact as shown in Fig.16. There is a possibility that these tensile 
stresses lead to some degree of structural damage especially in the joints of beams and 
columns. Therefore, further detailed analyses are necessary to investigate this phenomenon. 

5 CONCLUSION 
The formerly developed ASI technique for the linear Timoshenko beam element provides 

higher computational efficiency than the conventional finite element scheme, and is known to 
be able to cope with dynamic behaviors with strong nonlinearities including such phenomena 
as member fracture. However, it still lacked accuracy in elastic range when the number of 
elements per member is small. In this study, the ASI-Gauss technique, which deals elastic 
members by locating the stress evaluation points of two consecutive elements at Gaussian 
points, is proposed. Elasto-plastic analyses under both static and dynamic loading are 
performed to verify the proposed technique, and it is confirmed that nearly converged 
solutions are obtained even when the number of elements per member is two. It gives results 
with high accuracy at very low calculation cost, which may act efficiently in application to 
analyses of large-scale framed structures. 

Instead of applying impact loads in the form of nodal forces, impact phenomenon is 
simulated by means of contacts between the elements involved. This elemental contact 
algorithm is also useful to simulate fractured elements colliding with other elements, and to 
consider the variation of parameters of the colliding structure. The elemental contact 
algorithm is verified from the point of conservation of energy and the result showed its high 
reliability.  

The ASI-Gauss technique with the elemental contact and the member fracture algorithms 
are applied to dynamic analyses with strong nonlinearities and discontinuities, where impact 
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of an aircraft against a ten-storied framed structure is discussed using four different sets of 
parameters for the aircraft. From the results, we observed the propagation phenomenon of 
impact loads and shock waves. Also, a proper difference in impact damage is obtained by 
different sets of parameters, and in practically short calculation time. Therefore, the numerical 
analysis code used in this study is considered to be an efficient code for impact analyses of 
large-scale framed structures. However, further study is considered necessary to evaluate the 
structural damage caused by the tensile stresses of the columns, and damping matrices as well 
as the wall and floor slabs should also be considered in the future to improve the accuracy. 

Figure 16: Tensile stresses observed in the ten-storied framed structure after impact (Case I). 
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