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ABSTRACT

A new finite element code using the Adaptively Shifted Integration (ASI) technique with a
linear Timoshenko beam element, which can express member fracture by a plastic hinge located
at an exact position with a simultaneous release of the resultant forces in the element, is applied
to the seismic damage analysis of reinforced concrete (RC) framed structures. Contact between
members is also considered in order to obtain results that agree more closely with actual
behaviors such as intermediate-ayer failure. By using the proposed code, sufficiently reliable
solutions have been obtained and the results reveal that this technique can be used in the
numerical estimation of structural reliabilities.

INTRODUCTION

In the conventional design of a building, only static analysis in the horizontal and uniaxial
directions is commonly carried out, in order to minimize calculation costs. This approach may
ensure the structural strength of the building, if there is sufficient strength to support the load in
vertical direction. However, the mass system model replaces the building layer in dynamic
analysis, and the complicated dynamic behavior of the structure at member level is not
sufficiently examined. Therefore, the development of a more precise and more efficient dynamic
analysis code is strongly desired. Recently, significant advances in the field of computers have
been removing the calculation cost restrictions, and various dynamic analysis codes are being
developed. In this study, the Adaptively Shifted Integration (ASI) technique (Toi and Isobe
1993) is implemented into the finite clement code in order to develop a more precise and less
calculation-time-consuming seismic damage analytical tool.

The purpose of this study is to verify the validity of the ASI technique in seismic damage
analysis and to construct a highly efficient structural design tool for RC structures. Simple
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Fig.1 Linear Timoshenko beam element and its physical equivalent

numerical tests showing the validity of the modeling of an RC beam along with the validity of
the implemented scheme, are carried out. Also, those examples involving structural
discontinuities such as member fracture are carried out to show the expansibility of the scheme.
A contact algorithm is added to the code to reproduce phenomena such as intermediatedayer
failure.

ADAPTIVELY SHIFTED INTEGRATION TECHNIQUE

A relation between the location of a numerical integration point (s;) and occurrence of a
plastic hinge (r;) in the linear Timoshenko beam element (- <r1,s;=1) is obtained by
considering the equivalence conditions between the strain energy approximations of a linear
Timoshenko beam element and a physical model known as the rigid-bodies spring model
(RBSM). Referring to Figure 1, the relation is expressed by the following equation (Toi 1991):

S$1= T orr=-—8 (1)

where s, and 1, are position of the numerical integration point and position of the plastic hinge or
member fracture, respectively.

When the entire region in an element behaves elastically, the midpoint of the element
(s1=0) is the most appropriate integration point from considerations of accuracy and symmetry.
The internal force vector at step n based on the updated Lagrangian formulation, is expressed as

GFY= [ LT PTI7 - BL O - (2RO) @

where the value in parenthesis in the displacement-strain matrix [*B.] indicates the location of
the integration point, and that in the resultant force vector {ZR} indicates the point at which
stresses are evaluated, respectively. [°T] and [*7] are the transformation matrices based upon
the updated Lagrangian formulation.

Using elementary beam theory, relations between bending moments &, R, and shear
forces Ry, Ry can be expressed as
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Thus, the distributions of bending moment increments A,Ri(s) and AnR:(s) along the
element length can be approximated by the following equations using the bending moment
increments A,R:1(0), ApR;(0) and the shear force increments A,Rs(0), AnRs(0) at the
midpoint of the element:

DuRi(s) = AnRy(0) — 2n 2(0)"’5 (4a)
Bui(s) = A Fp(0) — BeFolOs (@)

where n; is element length at #=1,. Equations (4) show that bending moments are subject to a
linear change in an element and are likely to take the maximum value on either ends (s = £1).
As other resultant forces have constant values in the element, a fully plastic state can be
determined with a yield function by comparing the calculated distributions from Eqgs.(4).

In dynamic collapse analyses using the ASI technique, an explosion or a fracture is
expressed by shifting the numerical integration point according to Eq.(1) immediately after the
occurrence of a fractured section on either end of the element, and reducing the resultant forces
of the element simultaneously. For instance, if a fully plastic section or a fractured section has
first occurred at the left end of an element (r=-1), the numerical integration point is shifted
immediately to the right end of the element (s=1) according to Eq.(1). The released force vector

which operates on the element at the next step in the analysis is then expressed by the following
equation:

GFY = [ P17 P11 - BBOF - GR(-1)d )

Similarly, if a fully plastic section or a fractured section has first occurred at the right end of the
element (1=1), the numerical integration point is shifted to the left end of the element (s=-1).

In case of the implicit scheme, the incremental stiffness matrices used in the algorithm,
for the case when the entire region in an element is elastic, are

RE) = [ TV PTIRB O ID* OB O)PT] - [Tl (6a)
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where [D¢], RG]}, 5] are the elastic stress-strain, initial displacement and initial stress

matrices, respectively. In case the section is fully plastic or has fractured first at the left end of
the element (r=-1), the incremental stiffness matrices are given by the following equation:
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where [D] is the plastic stress-strain matrix. It should be noted that when new hinges are
formed the resultant force increments calculated at the new integration point are automatically
added to those originally existing at the very point. As a result of using this procedure, a
"non-smoothness” type of phenomenon does not appear in the calculation. More details of the
implicit ASI algorithm are explained in the author's previous papers (Toi and Isobe 1993, Isobe
and Toi 2000).

STATIC AND QUASI-STATIC ANALYSES OF RC BEAMS

A triinear type model which has a crack point and an yield point is employed to RC
beams subjected under non-cyclic loads. Figure 2 shows the load-displacement curves obtained
by the conventional code and by the ASI technique, in case of a simply supported column
subjected to shear force. The results show that the converged solution can be obtained by only
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Fig.2 Simply supported column subjected to shear force
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two-element subdivision per member in the ASI technique, while more elements are required in
order to obtain the converged solution in the conventional finite element code. The validity of
the tridinear type model used in the analysis is confirmed by comparing the result with that of
the experiment (Kanakubo and Sonebe 1992).

A degrading tri-linear model is applied to RC beams subjected under cyclic loads. Figure
3 shows load-displacement curves obtained from the experiment of an RC column under
repeated quasi-static load (Kanakubo and Sonebe 1992), along with a numerical result obtained
by the ASI technique with two-element subdivision per member. The validity of the degrading
tridinear model can be verified by the comparison.

SEISMIC COLLAPSE ANALYSIS CONSIDERING MEMBER FRACTURE AND CONTACT

Phenomena with strong nonlinearity and discontinuities such as member fracture are
casily analyzable using the proposed code. However, behavior such as the penetration of a
member through a floor could be observed in the analyses (Isobe and Toi 2000), since contact
between members was not considered. Actually, some structures observed in the Great
Hanshin-Awaji Earthquake were collapsed in the intermediate layer and as a result, the upper
layer piled up on the layer. Although there are some numerical examples using the Distinct
Element Method (DEM) that consider contact between members, there are no application
examples using the FEM that can continuously analyze the behavior from the elastic stage to the
collapse stage. Thus, a contact algorithm is added to the proposed code and applied to the
seismic damage analysis to reproduce the intermediate-layer failure phenomena.

Member fracture is assumed to occur at certain occasions when at least one of the
following equations has been satisfied.
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where dfer, and dfe.p are the critical ductility factors for x—and y-axes, 7V xexp and ¥ yeyp are the
critical shearing strain for x—and y-axes, respectively. Values of 5.0(column) and 20.0(beam)
for the critical ductility factors, and 4.0X10™ for the critical shearing strain are used in this
paper.

When member fracture occurs according to the conditions given above, it is expressed by
shifting the numerical integration point of the fractured element with a simultaneous release of
the resultant forces in the element, as shown in Figure 4. The distribution of element mass at
each node point is controlled to split into half of the mass subjected at the node point before the
fracture. It is also to be noted that as elements and node points are still treated as a continuous
model in the calculation process, new virtual node points for the fractured sections are needed to
be established at the post-processing stage. The elements with the virtual node points are then
visualized as rigid bars thereafter.
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Fig.4 ASI technique dealing with member fracture
Contact of fractured elements is judged by using post-processing data, which includes
virtual node points for the fractured elements, and thus expressing the actual fractured
phenomena. Figure 5 shows the relation of coordinates between fractured element and other
elements. A; and A; denote both node points of a fractured element E;. Likewise, B;; and By,
denote both node points of other elements Ej(i=1,2,3,**n). Using the coordinates of each node

point; Ai(Xni,¥n,2n), Aa(Xe,¥,Zn), Biu(XinYinszi), Bi(Xi,Yi,zi), the condition of four node
points of both elements existing on a same plane can be defined as the equation below:
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Also, the condition of elements existing in a specific distance from a fractured element, is
assumed as the equation below:

{A1Bi1| + |A1Bio| + [A3Bi| + |43 Bg| < Ci(Ly + L;) (10)

where |41B1|, [A1Bi|, [A2Bal, |A2Bi| are the distance between each node point, and Ly,
L(i=1,2,3,--'n) are the length of fractured element E; and other elements Ei(i=1,2,3-"'n),
respectively. C) is a coefficient related to contact length, and the value of 1.8 is used.

On the other hand, another condition is given to the elements, which exist on a same plane
from the initial stage of the analysis. The condition of elements existing in a specific distance
from a fractured element on a same plane, is given by:
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Fig.5 Fractured element and gap elements in contact algorithm
|A1Ba| + [A1By| < L; (11a)
|A2Bir| + [A3 Bz < L (11b)

In this algorithm, contact loop is automatically avoided if the distance between node points is
not decreasing. For the elements that exist on a same plane from the initial stage (Eq.(9)), the
elements are judged to be in contact if Eq.(11) is satisfied. For other elements which does not
exist on a same plane, and if only the distance between node points satisfies Eq.(10), the
elements are judged to be in contact by the next condition, which refers to the four node points
nearly forming a plane:

f($7 y7z) S C‘f (12)

Cy is a coefficient expressing the degree of the planar shape, which is fixed by considering the
sectional properties of constituting members. Values of 2.0X 10’ m® for columns and 5.0X 10*
m’ for beams are used in this paper.

Consequently, the contact between members is judged by two sets of conditions; Egs.(9),
(11) and Eqs.(10), (12). Once two clements are judged to be in contact, a total of four gap
elements are fixed between the node points, as shown in Figure 5. Material properties for the
gap elements are assumed as the same properties with other elements.

Seismic damage analyses are carried out to an eight-story three-span RC building
subjected under El Centro seismic wave. The seismic wave is given precisely at the fixed points
on the ground floor. The total number of elements is 464, and that of node points is 340. Figure
6(a) shows a case in which only member fracture is considered, and Figure 6(b) shows the result
when the contact algorithm is added to the code. By considering the contact between members,
the reproduction of scismic damage observed in actual carthquakes such as intermediate-dayer
failure became possible. The computing time using SUN ultra 5 (CPU: 270MHz, memory:
128MB) was approximately 50 minutes.

CONCLUSION

In this paper, a nonlinear finite element code using the ASI technique with RC beam
model is developed, in order to analyze seismic damage problems including structural
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Fig.6 Seismic damage analysis of RC framed structure

discontinuities. The fracture of a section is modeled by shifting the numerical integration point
with a simultaneous release of the resultant forces. The proposed code is improved by
considering the contact between members in order to obtain results that agree more closely with
actual behavior. The results reveal that this technique can be used in the numerical estimation of
structural reliabilities.
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