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Summary

In this sudy, link mechanisms are modeled using finite elements based upon the Shifted Integration technique. A
sngle link ructure of a pin joint and arigid bar is expressed by two linear Timoshenko beam elements with their
numerical integration points shifted to opposte ends of the link joint. The finite-element gpproach in control schemes
may provide flexibility againg sudden change in a hardware system, since the remodeling can be achieved easily by
rewriting input data. This paper describes an gpplication of the modding to normal pin joint-rigid bar link mechanisms. A
numerical scheme for obtaining joint torque curves in n-link mechanisms based upon Cartesan coordinates is derived,
and a numerical tes on an 8-link mechanism by the Finite Element Method is carried out. The obtained joint torque
curves aswell asthe CPU time are compared to those obtained by the conventional Newton-Euler method.

Introduction

The pardlel control of robotic sysems, which is an adgptive control scheme involving the reassembly of
hardware sysems into different configurations while ill using the same software, has been progressvely developed in
recent years. The concept of robotic systems with high adaptability to their environment is called Pardlel Robotics, and
is expected to be gpplied in space, under the sea, in mining, and in congruction, where environments tend to change
rapidly. Hamlin and Sanderson [1], for example, designed a prototype robotic architecture, which is cgpable of
resssembling into many different petterns of platforms condgting of linear actuators and multi-link spherica joints.
However, software systems which can practically handle the change in the higher redundant architecture have not been
edablished yet, snce difficulties lies in obtaining the torque of each joint of such architecture by conventional schemes

for solving the dynamics.

A convertional control system necessitatesthe change of dynamic equations depending on the shgpe of asystem
or the quantity of the linked members. On the other hand, the Finite Element Method (FEM), a widdy used
computationd tool for andyzing sructures, fluids, etc., is cgpable of expressing the behaviors of each discrete demernt,



as well as the whole cortinuous system, by evauating the dynamic equations derived from the energy principle. Isobe
and Nakagawa [2] applied the FEM to a control system of connected piezodectric actuators and achieved good control
not only of the actuator itself but dso of the entire system. The FEM does not require remplementation of dynamic
equations in the software, and flexible control can be achieved simply by changing the input detaiin the case of aphysical
change in the hardware sysem. For smplicity and flexibility, this method may provide a suitable control system,
particularly for higher redundant link mechanisms.

In this paper, a new type of control scheme for link mechanisms has been developed. Link mechanisms are
modeled using linear Timoshenko beam elements based on the Shifted Integration (S) technique [3], which was
originaly used in finite dement andlyses of framed dructures A numerical scheme for obtaining the joint torque in
Cartesan coordinates is derived, and anumerica example for anormd pin joint-rigid bar link mechanismis shown.

Finite-dement modeling of alink mechanism

The Shifted Integration technique, which is gpplied in order to mode link mechanisms in this paper, was
originally developed as a finite element scheme for the analysis of framed sructures. By considering the equivalence
conditions between the strain energy gpproximetions of a linear Timoshenko beam eement and a physical model, the
rigid-bodies spring mode (RBSM), the rdationship between the locations of a numerical integration point (s;) and a
plagtic hinge (r1) in the linear Timoshenko beam element (-1 < r,s; < 1) is obtained [3]. Referring to Fg.1, it is
expressad by the following equation:

§1 = —r1 Or 1 = —8§1 @

where s,and r; are the positions of the numerical integration point in the finite element and the soring in the RBSM,
respectively. Referring to the equation above, the rotational and shear spring placed at the left end (r;=-1) of an element
can be expressed by shifting a numerical integration point in the dement to theright end (s,=1). Various giffness values
of alink joint are then expressad by changing the giffness of the soring (or the dement). Figure 2 shows the generd
concept of modeling by the S technique. As shown in the figure, a link mechanism formed by a motor and a link
member can be modeled by placing anodal point & the center of gravity, and by two Timoshenko beam elements with
numerical integration points shifted to the opposte ends of the link joint. The dementd giffness matrix isobtained using
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s1, rand the normdlized siffness Ciy Of the pring, as shown below:
K] = Conr /V [Bs)I" [D(r1)][B(s)]dV @

Varioustypes of link joints (pin to rigid) can be expressed by varying Co between 0 and 1. The vdue O isused in this
paper to etimeate the validity of the proposed scheme in cortrolling the normal pin joint-rigid bar link mechanisms. A
lumped mass metrix is aso defined using the location of the numerical integration point 5. The diagonal components of
the mass metrix arel
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where

my = pAl(1 —81)/2, my = pAl(1+ 51)/2

@

and p, A |, and I, arethe density of the member, the cross-sectional ares, the length of the ement and the polar moment
of areainertia, respectively. According to the matrix, the total mass of the dement assembles ar,;=1 whenthelink joint is
placed a ri;= -1 (thus 5=1), and vice versa. A nodd point placed between two Timoshenko beam dements thus
expreses the center of gravity inalink member (see Hg.2).

Calculation of joint torguein n-link mechaniam
Figure 3 shows the nodd forces (based on global coordinates) acting on the i-th link in an n-link mechanism,
and the rdationship between link numbers and noda numbers. The joint torque 7; required on thei-th link is determined

by adding i+1-th joint torque Ti:1 to the sum of inertiamoments acting in this link, and is expressad by nodal forces Fix
and Fic¢ based on dementd (or link) coordinates as follows.

7 = licFice +1( Y Fjo)z+ Fiog + i Q)
j=itl

where lic is the length between the former joint and the center of gravity and |; is the link length, respectively. By
arranging Eq. (5) into globa coordinates and in matrix form, the joint torque vector is expressed as

{7} = [T P} ©

where{P"} isavector rdated to nodd force, defined asfollows:
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Using the rotationa angle ¢ between globa and elementa (or link) coordinates, the transformation metrix [T is

expresed as
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Convertional schemes require reiteration of the transformation between each link to cdculate every joint torque in the
link mechanism. However, the proposed scheme using FEM requires only one tranformetion between the global and
elementd coordinates. This leads to a reduction of cdculation time, particularly when the link number is not nomindl.
[L"] isametrix related to member length, which is expressed as:
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Information on i+1~n link is summed by multiplying the above matrix with vector [T"){ P"}, which is the nodal force
vector transformed into dementd coordinates. On the other hand, a vector related to incrementa nodd force acting on
thei-thlink is defined by using the noda numbers

Afex
Afrz
{Ape} = S Afux ¢y (B=2i, i=1,---,n) (10)
St Afuz
Afrp

Thusthe vector rdated to nodd force acting onthei-th link a t+A t is successvely caculated by using the above vector:
Pl ={Bt +{An}, (k=20 (1)

The successive values of nHlink joint torque are then obtained by subgtituting Eq.(11) into Eq.(6). Newmark's 5 method
(6=1/2) isusad for the time integration scheme to solve theincrementa kinematic equation.

Numerical example

The proposad scheme using FEM s gpplied to the joint torque caculation of an 8-link mechanism as an
example, and the obtained torque curves as well as the CPU time is compared with those obtained by the conventional
Newton-Euler method. Mathematica 4.0 is used not only for conducting dynamic equations but aso for caculating the
joint torque when applying the conventional scheme to this particular problem, since the implementation of the massive

equaions in other oftware programs is practically impossible. Microsoft's Fortran PowerStation 4.0 is used to compile
the FEM program as well as the program for the Newton-Euler method in cases with fewer links. All calculations a

carried out on a Dell Dimension XPS T600 (CPU: Intel Pentium Il 600 MHz, RAM: 383MB) PC system.

Figures 4(a) and 4(b) show the torque curves obtained by both schemes when the target trajectory for 1.
motion is given to the 8-link mechanism (each link length: 20 cm, weight: 107.5 g, center of gravity at mid-point) a
shown in the figure. Gravity is assumed to act vertically downward. Although the motion may produce various nonline
forces such as the Coriolis force, the torque curves obtained by the FEM are in good agreement with those obtaine
the Newton-Euler method. Evidently, the proposed scheme is capable of considering every component in the dynami
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Fig.4 (a) Joint torque curves obtained by Newton-FEuler method Fig.4 (b) Joint torque curves obtained by FEM

Comparisons between genuine CPU times for 1.0 s motion and time possession in the tota process for a5-link
mechanism in both schemes (both compiled in Fortran) are shown in Figs. 5(a) and 5(b), respectively. Although the
conventional scheme has a smdl advantage over the proposed scheme in terms of CPU time, its tota process time,
which includes the congtruction of dynamic equations and the implementation into another software program, is much
longer than that of the proposed scheme. Conversaly, the proposed scherme has no need to change the description in its
program, and users are encouraged to change the system version by simply rewriting the input deta of the numerical
modd. Therefore, the flexibility of the control sysemisincreased and thetota processtime can be Sgnificantly reduced.
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Conduding Remarks

The gpproach to the control of link mechanisms using FEM may achieve red-time control of hyper-redundant
manipulatorsthat consg of 10, 20, or even more link members. It may aso help in controlling the behaviors of flexible
manipulators where the gtiffness of the link member is an important factor.
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