吊り天井の地震時脱落挙動シミュレーションの V&Vと数値解析例

V&V and Numerical Examples of Suspended Ceiling Collapse Simulation under Seismic Excitation

大村浩之1),山下拓三2),磯部大吾郎3)

Hiroyuki Omura, Takuzo Yamashita and Daigoro Isobe

(工) 筑波大学 大学院生(〒305-8573 茨城県つくば市天王台1-1-1, E-mail: s1820884@s.tsukuba.ac.jp)
(工) 防災科学技術研究所 主任研究員(〒305-0006 茨城県つくば市天王台3-1, E-mail: tyamashi@bosai.go.jp)
(エ) 筑波大学 システム情報系 教授(〒305-8573 茨城県つくば市天王台1-1-1, E-mail: isobe@kz.tsukuba.ac.jp)

In this study, a numerical code that can simulate ceiling collapse phenomena in wide-area facility under seismic excitation was developed. The ASI-Gauss technique was applied for the numerical code. A numerical model of a suspended ceiling was validated by the reproduction analysis of the experiment conducted at the E-Defense. In addition, numerical analyses on the behaviors of earthquake-resistant ceilings in the gymnasium and suspended ceiling in a concert hall were conducted using the code.

Key Words : Suspended ceiling, Non-structural component, ASI-Gauss technique, Collapse analysis

1. 緒言

一般的に普及している吊り天井の構成部材は, 接合金 具と呼ばれる爪を引っ掛けたりするだけの簡易的な金物 で接合されているため, 地震動や強風などの大きな外乱 を受けた際, 接合金具が外れることで部材が分離し, 天井 材が脱落する可能性がある. 実際, 1995年の兵庫県南部地 震以降, 大規模な地震災害が発生するたび, 吊り天井が脱 落し床に散乱するという被害事例が多数報告されている [1][2]. さらに, 報告された事例は, 体育館や空港, 駅, オフィスビルといった大空間を有する施設で発生したケ ースがほとんどである. このような大空間施設は, 災害時 に避難拠点としての機能を要求されるため, 天井の脱落・ 散乱を防ぎ, 施設の健全性を維持することが重要となる.

吊り天井の脱落メカニズムを検討するために,2014年 に防災科学技術研究所が所有する実大三次元震動破壊実 験施設(以下,E-ディフェンス)において,吊り天井が取 り付けられた学校体育館の実大スケール試験体を用いた 振動台実験が実施された[3]. 当該実験によって,典型的 な学校体育館における天井脱落現象の力学的なメカニズ ムに関して有用な知見が得られた.

ところが、実際の施設に取り付けられている吊り天井 は、施設の規模や用途などによって様々な仕様を有する. 天井面の形状が異なるだけでも、地震動を受けて天井脱 落が生じるまでのプロセスも変化することが予想される. さらには、天井重量や接合金具の種類などによっても脱 落性状は変化し得る.したがって、吊り天井の仕様を様々 変更しながら繰り返し調査する必要があるが、その度に 上述の振動台実験のような大規模な実験を行うには莫大 な費用が要求される.そのため、実験的手法の代替として、 数値解析による吊り天井脱落挙動のシミュレーション技 術を開発し、多様な状況下における天井脱落メカニズム を検証する必要がある.

以上を踏まえ、本研究では梁要素を組み込んだ高精度 かつ高効率な有限要素法であるASI-Gauss法[4]に対して、 部材間接触アルゴリズム、接合金具の脱落アルゴリズム、 支持点加振アルゴリズムを導入することで天井脱落挙動 解析技術を開発する.その上で、上述のE-ディフェンスに よる天井崩落実験の再現解析を通してV&Vを実施する. また、開発した天井脱落挙動解析技術を用いて、技術基準 で規定された吊り天井に対する耐震対策の有効性検討を 実施する.さらに、音響施設に取り付けられた複雑形状を 有する吊り天井の地震時挙動解析を実施し、その脱落メ カニズムについて検証する.

2. 吊り天井の脱落挙動解析技術

本研究では、ASI-Gauss法に基づく有限要素法に吊り天 井の脱落挙動を表現するために必要な諸アルゴリズムを 導入することで天井脱落挙動解析を実施する.具体的に は、ASI-Gauss法を用いた動的構造解析をベースとして、 支持点加振アルゴリズム、部材間接触アルゴリズム、接合 金具の脱落アルゴリズム(部材破断アルゴリズム)を実装 する.また、ASI-Gauss法は梁要素のみを対象とした手法 であるため、梁要素による吊り天井のモデル化方法を提 案する.

本稿では、梁要素による吊り天井のモデル化方法、接合 金具の脱落アルゴリズムについて説明する. なお、ASI-Gauss法の基礎理論および支持点加振、接触アルゴリズム については文献[4]を参照されたい.

(1) 梁要素による吊り天井のモデル化方法

本研究で対象とする、鋼製下地在来工法吊り天井の写

真を図1に示す.構造躯体の屋根梁などから吊るされた吊 りボルトの先端に,野縁受けと呼ばれる軽量鉄骨材が結 合されており,それと直交する向きで野縁と呼ばれる部 材が配置されている.この野縁に石膏ボードなどの仕上 げ材をビス留めすることで天井面を形成している.野縁 受けと野縁,吊りボルトと野縁受け,野縁同士の結合には それぞれクリップ,ハンガー,野縁ジョイントと呼ばれる 接合金具を使用している.

図2に吊り天井モデルの概観を示す.仕上げ材,野緑, 野縁受け,吊りボルトの構成部材に加え,クリップ,ハン ガー,野縁ジョイント,ビスの接合金具まで含めて線形チ モシェンコ梁要素でモデル化した.基本的に部材は全て2 要素で分割しているが,座屈変形が生じ得る吊りボルト のみ10要素分割している.これは,座屈のような高次の変 形解に対する計算精度を担保するためである.また,既往 の研究[5]によって,ハンガーの偏心性が吊りボルトの不 安定挙動に影響を及ぼすことが報告されているため,解 析上でも吊りボルトの材軸が野縁受けとハンガーとの接 合箇所に対してずれるよう,ハンガーをL字型にモデル化 し,この偏心性を考慮している.

図1 鋼製下地在来工法吊り天井

図2 吊り天井の解析モデル

主 1	中国の
1 1 1	女口亚六の炕冷木汁

接合金具	条件
ハンガー	引張軸力≧2.80 kN[3]
	シングル(腹掛け):引張軸力≧0.35 kN[3]
クリップ	シングル(背掛け):引張軸力≧0.70 kN[3]
	ダブル : 引張軸力≧0.80 kN[3]
۲° 7	引張軸力≧0.40 kN かつ 引張軸変位≧3.0 mm[6]
	せん断力≧0.30 kN かつ せん断変位≧18.0 mm[7]
野縁ジョイント	引張軸変位≧42.5 mm

(2) 接合金具の脱落条件

一般に,接合金具の脱落が吊り天井落下の主要因にな ることが知られている.本解析では,接合金具の種類に応 じた脱落判定式を設定し,要素がその条件を満たした際 に破断させることで接合金具の脱落を表現する.各判定 式は全て既往の要素実験もしくは実験的事実に基づいて 決定しており,要素に作用する断面力によって判定する 荷重条件と,要素に生じた変形によって判定する変位条 件の2種類を用いる.

各接合金具の脱落条件を表1に示す. クリップとハンガ ーの脱落荷重の値には,実験[3]の一環で行われた要素試 験によって得られた最大耐力を設定している.また,実験 において,加振中にクリップが滑動し力が散逸する現象 が報告されている.そこで,クリップに関しては表1の脱 落荷重値に安全率1.5を掛けた値を脱落判定に用いること とする.ビスの脱落条件は文献[6,7]に基づいて,軸方向 とせん断方向についてそれぞれ独立に設定している.

野縁ジョイントはその両側から野縁を差し込む形で接 合するため、軸方向に野縁ジョイントの半分の長さ42.5 mmの伸びが生じたときに脱落させる.それに伴い、野縁 ジョイントの滑りを考慮するために、要素の軸剛性を引 抜き剛性7.31 N/mmまで低下させている.ただし、野縁ジ ョイント要素の長さが初期状態(2 mm)以下のときは、 圧縮力に対しては野縁が抵抗するものとして、軸剛性は 初期値(6.36×10⁶ N/mm)のままとする.

3. 体育館天井脱落実験の再現解析

(1) 実験試験体および解析モデルの概要

E-ディフェンスの天井脱落実験では学校体育館を模擬 した試験体が使用された.構造躯体は鋼構造の平屋建て であり、10:3の屋根勾配を有する.それと同じ勾配の吊り 天井が屋根部材から吊られている.天井の形式は鋼製下 地在来工法天井である.試験体の詳細な仕様は文献[3]に 記載されているため、ここでは割愛する.

図3に試験体の解析モデルの概観を示す. 要素数は 39,750, 節点数は32,291である. 要素には,1次関数を変位 関数として用いる線形チモシェンコ梁要素を使用してい る. 吊り天井部分のモデル化方法は第2章で述べた内容に 基づいている.

図3 吊り天井付き体育館の解析モデル

(2) 解析条件

増分理論にはUpdated Lagrangian Formulation (U.L.F)を 採用し、座標系を逐次更新することで有限変形を考慮し ている.時間積分にはNewmark- β 法による陰解法を採用 し、ソルバーには前処理付き共役勾配法を使用した.

入力波には,実験において振動台上で計測された3軸の 加速度波形(図4)を用いる.なお,原波はK-NET仙台波 50%である.時間刻みは1 ms,総ステップ数は80,000であ る.計算時間は,Intel Corei7-4790K CPU @ 4.00 GHz を用 いて約100時間であった.

(3) 解析結果

図5に脱落した天井材の範囲を示す.入力波の第一ピー クを迎える25 s付近からいくつかクリップが脱落し,60 s 付近から第二ピークを受けることによってクリップの脱 落がさらに進行し,やがて天井材が落下した.この時,脱 落したのはクリップと野縁ジョイントのみで,他の接合 金具の脱落は見られなかった.特に,クリップが先行して 脱落し,野縁ジョイントの脱落は主に天井材が落下する 過程で発生したことから,クリップの脱落が天井材落下 の実質的な要因であるといえる.これは,実験[3]で報告 された内容と一致している.また,図5から解析で発生し た脱落箇所は天井頂部付近に集中的にしており,実験結 果を定性的に再現できていることが分かる.

解析で得られた屋根と天井の加速度応答フーリエスペ クトルをそれぞれ図6,7に示す.なお,評価点は平面図に おける中央点で,天井材が脱落し始める60sまでの範囲で 算出している.スペクトルから,屋根と天井それぞれの振 動特性が実験結果と良好に一致しており,解析結果が妥 当であることが確認された.また,紙面の都合上詳細は割 愛するが,変位応答についても実験結果と良好に対応す ることを確認している.

4. 体育館天井に対する耐震対策の有効性検証

(1) 耐震天井および解析モデルの概要

国土交通省が公布している吊り天井の耐震化に関する 技術基準[8]では、主に天井の振れ止めのために吊りボル ト間に斜め部材を設けること、壁等との衝突防止のため に60mm以上のクリアランスを設けること、接合金具を補 強することが定められている.

本解析ではE-ディフェンス実験[3]で使用された耐震天 井付き体育館の試験体を対象とする.構造躯体は第3章で 示した再現解析で対象としたものと同様である.吊り天 井についても第3章の耐震対策が施されていないもの(以 下,未対策天井)と基本的には同じだが,主な相違点とし て,横架材と天井材の間および天井頂部にそれぞれ60mm のクリアランスを設けている.また,接合金具に耐震フリ ーハンガー,耐震クリップ,耐風圧クリップを用いている. 耐震クリップは耐風圧クリップと比較して耐力が大きい ため,水平力の伝達経路である斜め部材の周囲に配置し, それ以外の箇所には耐風圧クリップを配置している.斜 め部材は桁行方向と梁間方向それぞれに27組ずつ設置し ており,材料には技術基準に記載されているもの([-40× 20×t1.6)を使用している.

上述の試験体のモデルを図8に示す. 吊りボルト間に設 けられた斜め部材は,吊りボルトや躯体のブレース材と 同様,座屈変形を高精度に評価するために10要素分割で モデル化し,両端のピン接合は曲げ剛性を低下させた微 小要素を配置することでモデル化している.

図8 耐震天井付き体育館の解析モデル

接合金具	条件
ハンガー	引張軸力≧5.55 kN[3]
カルップ	耐震クリップ:引張軸力≧2.50 kN[3]
<i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i>	耐風圧クリップ:引張軸力≧2.00 kN[3]
ドフ	引張軸力≧0.40 kN かつ 引張軸変位≧3.0 mm[6]
	せん断力≧0.30 kN かつ せん断変位≧18.0 mm[7]
野縁ジョイント	引張軸変位≧42.5 mm

表2 耐震天井の接合金具の脱落条件

耐震天井モデルで設定している接合金具の脱落条件の 閾値は表2に示している通りである.耐風圧クリップ,耐 震クリップ,耐震ハンガーの脱落荷重は,未対策天井の場 合と同様,要素試験結果[3]に基づいて設定している.ク リップの脱落荷重について,未対策天井の場合は腹掛け と背掛けで異なる値を設定していたが,耐風圧クリップ および耐震クリップはビス留めされているため,掛け方 で耐力の差はないと考え,区別せず脱落荷重を設定して いる.また,未対策天井の場合に考慮していたクリップの 滑動は,ビスによる緊結で生じないため,本解析では安全 率を掛けていない.ビスおよび野縁ジョイントの脱落条 件については未対策天井の場合と同様である.

(2) 解析条件

基本的な解析条件は全て未対策天井の再現解析と同様 である.入力地震波には,耐震天井を対象とした実験の振 動台上で計測された3軸の加速度波形(原波は未対策天井 解析と同様のK-NET仙台波50%)を用いる.

また,各耐震対策の有効性を個別に検討するために, CASE 1:斜め部材のみを適用した場合,CASE 2:クリア ランスのみを適用した場合,CASE 3:接合金具の補強の みを適用した場合の解析も同様の条件で実施する.CASE 1~3の耐震対策を適用していない部分(例えばCASE1にお けるクリアランスおよび接合金具)は全て未対策天井と 同じ仕様とする.なお,全ての耐震対策を適用した場合, すなわち実験試験体と同じモデルをCASE 0とする.

(3) 解析結果

まず,耐震天井のモデル化の妥当性を確認するために, CASE 0の解析結果を実験結果と比較する.CASE 0では天 井の損傷は全く発生せず,実験と同様の結果が得られた. また,図9に示す天井の加速度応答フーリエスペクトルか ら,耐震天井モデルの振動特性は実験結果と良好に一致 しており,モデル化が妥当であることが確認された.さら に,図10には,次式で定義するクリップの脱落危険度f^{clip} の分布をコンター図で示す.

$$f^{clip} = \frac{N_{MAX}}{N^{clip}} \tag{5-1}$$

ここで、 N_{MAX} は解析中にクリップに作用した最大引張軸 力、 N^{clip} は表2に記載しているそれぞれのクリップの脱落 荷重である.また、脱落に至ったクリップは $f^{clip} = 1$ とし、 N_{MAX} が0より小さい圧縮の場合は $f^{clip} = 0$ としている.図 10から、CASE0の場合は全領域において脱落危険度が0.4 程度を下回っており、十分に余力があることが分かる.

次にCASE1~3の斜め部材,クリアランス,接合金具の 補強をそれぞれ個別に適用した場合の結果について述べ る. CASE 1~3の天井脱落範囲とクリップの脱落危険度の 分布を図11~16に示す.

斜め部材のみを設置したCASE1は、図11,12から、広 い範囲でクリップに負荷が作用し、未対策天井よりも天 井脱落の規模が大きくなっていることが分かる.これは、 斜め部材によって吊りボルト間のみが補剛され、クリッ プに応力が集中しやすくなったためだと考えられる.

クリアランスのみを導入したCASE 2は、図13,14から, 天井頂部付近に加え,壁際においてもクリップの負荷お よび天井材の脱落が生じていることが分かる.これは,天 井と壁との隙間が広がったことによって接触時の衝突力 が増大したことが原因と考えられる.

クリップの補強のみを適用したCASE 3は、図15に示し ているように、CASE 0と同様、天井材の脱落は発生しな かった.しかしながら、クリップの脱落は発生しており、 図16から天井頂部付近においてクリップに高い負荷が作

用していることが確認できる. すなわち, クリップを補強 するのみでは耐震性を十分確保できず, 未対策天井の場 合と同様, 頂部付近において天井が損傷し得ることが示 唆された.

5. コンサートホールにおける複雑形状を有する 吊り天井の脱落メカニズム検証

(1) 複雑形状を有する吊り天井および解析対象の概要

ホールや劇場などの音響性が要求される施設の吊り天 井は、反響性および遮音性を持たせるために天井面に凹 凸が設けられたり高密度な仕上げ材が用いられたりする ことある.そのような場合、地震動下において通常の吊り 天井には見られない特異な挙動を示すことが予想される. そこで、天井脱落挙動解析技術を用いて、複雑な形状を有 する吊り天井の脱落メカニズムを調査する.

解析対象とするコンサートホールの外観および内観を 図17に示す.仕上げ材には石膏ボードと比較して高密度 なFGボードが用いられており、単位面積当たりの質量は 22 kg/m²と、一般的な吊り天井(6~13 kg/m²)の約2倍であ る.その他の基本的な構造は在来工法天井と同様である.

当該天井は同じ構造を持つユニットが連結することで 天井全体を構成しており,ユニットの境界に段差が設け られている.1基の平面寸法は桁行3.6m×梁間4.0mであ る. 天井全体は,桁行方向に16基,梁間方向に6基の計96 基のユニットが連結されており,寸法は桁行51.6m×梁間 24.0mである.段差部は凹凸状の仕上げ材の側面と底面に 野縁が2本ずつビス留めされ,それらと矩形に組まれた野 縁受けがクリップで接合されている.段差の寸法は深さ, 幅ともに0.3mである.

また,構造躯体は鉄筋コンクリート造のシューボック ス型コンサートホールであり,半円状の舞台部分と矩形 上の客席部分で構成される.ただし,屋根部材のみ鉄骨造 である.建物寸法は桁行75.3m×梁間35.4m×上下23.15m である.

(2) 解析モデル

上述のコンサートホールの解析モデルを図18に示す. 要素数は322,712,節点数は272,062である.躯体を構成す る鉄筋コンクリート部材の構成則はTri-Linearモデルを用 いて表現する[9].耐震壁は面内方向の曲げ剛性を増加さ せた筋交い要素でモデル化する.吊り天井の各部材のモ デル化方法は第2章で述べた吊り天井のモデル化方法に 基づいている.ただし,仕上げ材の材料は石膏ボードから FGボードに変更している.ユニット同士の境界部分の野 縁と野縁受けは全て溶接接続されているため,剛接とす る.接合金具の脱落条件は全て未対策天井の場合(表1) と同様である.

図 20 段差部における損傷メカニズム

(3) 解析条件

入力地震波はJMA神戸波100%を使用し、その他の条件 はこれまでの解析と同様である.計算時間はIntel Corei7-4790K CPU @ 4.00 GHz を用いて約300時間であった.

(4) 解析結果

解析により得られた天井の落下状況を図19に示す.図 から分かるように,梁間方向の段差部分が顕著に落下し ている.壁から受ける衝突力に対して,壁と直交する向き の段差部分は周囲の平らな部分と比べて剛性が高く衝撃 力を伝播しやすいため、その付近でクリップの脱落が卓 越したものと考えられる(図20).なお、文献[10]におい て、当該天井の一部分を抽出した解析でこの傾向が現れ ることを定量的に確認している.

6. 結言

本研究では、ASI-Gauss法を基に地震時における天井脱 落挙動解析技術を開発し、E-ディフェンス実験[3]の再現 解析を通したV&V,各種耐震対策の有効性検討,複雑な 形状を有する吊り天井の地震時における脱落メカニズム の調査を行った.

再現解析の結果,解析で得られた躯体および天井の振 動特性は実験結果と良好に一致し,天井の脱落傾向も定 性的に再現できたことから,解析結果は妥当であるとい える.耐震対策の有効性検討の結果としては,クリップの 補強が最も天井の損傷を軽減できることが示されたが, 同時にそれだけでは十分に安全ではないことも示唆され た.複雑な形状を有する場合の吊り天井は,壁との衝突の 際に生じる衝撃力が段差部に沿って伝播し,その付近で クリップおよび天井が脱落している様子が確認された.

参考文献

- 国土交通省:平成23年(2011年)東北地方太平洋沖地 震被害調査報告書,2012.
- [2] 国立研究開発法人建築研究所:平成28年(2016年)熊本地震建築物被害調査報告書(速報),2016.
- [3] 佐々木智大ら: 大規模空間吊り天井の脱落被害メカ ニズム解明のためのE-ディフェンス加振実験報告 書 -大規模空間吊り天井の脱落被害再現実験およ び耐震吊り天井の耐震余裕度検証実験-,2015.
- [4] D. Isobe: Progressive Collapse Analysis of Structures: Numerical Codes and Applications, Elsevier, eBook ISBN: 9780128130421, Paperback ISBN: 9780128129753, 2018.
- [5] 清水陸朗ら: 吊り材の動的不安定挙動に関する研究 その1 吊り材の軸力の変動,日本建築学会大会学術 講演梗概集, B-1, pp.965-966, 2018.
- [6] 鎮西宏ら: 頭抜け試験と崩壊メカニズム 非構造部材 におけるビス接合部の力学的性状に関する研究 そ の1,日本建築学会大会学術講演梗概集,B-1,pp.891-892,2015.
- [7] 杉山達也ら: 在来工法天井の下地ボードと野縁のビス止め接合部のせん断試験 その1, 日本建築学会大会学術講演梗概集, B-1, pp.871-872, 2010.
- [8] 国土交通省:建築物における天井脱落対策に係る技 術基準の解説, 2013.
- [9] 磯部大吾郎ら: 有限要素法による RC 骨組構造の地 震崩壊解析コードの開発,構造工学論文集, Vol.48B, pp.385-394, 2002.
- [10] H. Omura *et al.*: Collapse Analysis of Ceilings Suspended in Concert Halls, Proceedings of the 7th International Conference on Protection of Structures against Hazards, 2018.