世界貿易センタービルのリダンダンシーに関する数値解析的研究

A Numerical Research on Redundancy of the World Trade Center Towers

○非 久永 哲也(筑波大院) 正 磯部 大吾郎(筑波大)

Tetsuya HISANAGA, Graduate School, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki Daigoro ISOBE, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki

1. 緒言

2001年9月11日、テロによってニューヨーク世界貿易セ ンター(WTC)ビルが完全崩壊したことは、人々に衝撃を与 えた。その際に崩壊したWTC2は、飛行機衝突から崩壊まで に1時間弱を要した。米国政府調査局であるFEMA[1]と NIST[2]がまとめた報告書によると、風荷重に対する補強シ ステムとして設置されたアウトリガートラスシステムが応力 伝達経路を確保することとなり、リダンダンシーが生まれ、 崩壊までの時間を稼ぐのに有効であった可能性を示唆してい る。

本研究の目標は、衝突から崩壊までの一連の事象を検証す ることである。現在、飛行機の衝突時におけるアウトリガー トラスシステムの作用や全体挙動に与える影響を検証するた め、WTC 全体モデルの飛行機衝突解析を行っている。その後、 衝突解析で得られる破壊されたモデルに火災を発生させるこ とで、アウトリガートラスシステムの効果を検証することが 可能となる。解析には ASI-Gauss 法[3]を用いる。本手法は、 骨組構造物の衝突崩壊解析を行う場合に有効な手法の1つで あり、通常の有限要素法に比べ格段に少ない要素数で、高精 度の収束解が得られる順応型 Shifted Integration (ASI 法)[4] を改良し、弾性解の精度を向上させたものである。

本稿では、風荷重の載荷による静的解析を行い、風荷重下におけるアウトリガートラスシステムの効果を検証する。

図1 アウトリガートラスシステムのモデル化

2. 降伏関数

解析に際し、要素の塑性状態を決定するために、以下の降 伏関数 fyを用いる。また、接合部の脆弱性を表現するため、 降伏関数には接合部強度係数 C_M(0.0~1.0)を導入した。

$$f_{y} = \left(\frac{M_{x}}{C_{M} \times M_{xo}}\right)^{2} + \left(\frac{M_{y}}{C_{M} \times M_{yo}}\right)^{2} + \left(\frac{N}{N_{0}}\right)^{2}$$
(1)

ここで M_x 、 M_y はx、y軸方向の曲げモーメント、Nは軸力 を表しており、下添字 "0"は、各断面力成分が単独で部材断 面に作用した場合の全断面塑性値であることを示す。

3. 解析モデルの構成

モデルの各部材の決定は日本建築学会による報告[5]を基本とし、FEMAやNISTによる報告も参考にした。WTCの構造的特徴として、外周部とコア部からなるチューブ構造であることが挙げられる。そして外周部とコア部を繋ぎ、風荷重に抵抗するためのアウトリガートラスシステムが上層部に設置されている。コア部は建物重量の約60%の鉛直荷重を支持し、外周部は鉛直荷重の残り約40%の支持と水平力に対する抵抗を受け持つ。コア柱の接合はエンドプレートをボルト接合するものであり、その曲げ強度は部材の20~30%と言われている[1]。これを表現するために、上記の接合部強度係数 CMを0.3とした。外周柱はボルト接合、下層部においては補強溶接を行っていた。

・解析に ASI-Gauss 法を用いるため 1 部材を 2 要素で表現 した。モデルの全要素数は 605314、全節点数は 435394 であ る。アウトリガートラスシステムを形成しているブレースは 106 階から 110 階に設置され、短辺方向に 6 フレーム、長辺 方向に 4 フレームある。上部には、四辺からの力を伝えるた め、四辺と中央を結ぶブレースや 109 階から 110 階にかけて 斜め方向にブレースが入っている。図 1 に WTC モデルの上 層部の長辺方向・短辺方向・上面図・鳥瞰図を示す。アウト リガートラスシステムを赤色で示している。

4. 自重解析

構築したモデルに自重を載荷する解析を行った。その結果 を図2に示す。図示する柱は図1の上面図に示す柱801と1001 である。他の構造と同時にアウトリガートラスシステムを設 置し自重解析すると、特に上層部の内力の値に不自然なばら つきが見られる。これは、実際には後付け施工であるアウト リガートラスシステムを初めに設置してしまうことで、建物 の自重によりブレース接合部間に内力が発生してしまうから である。本来、初期状態のブレースには内力はなく、接合さ れる柱などにも影響を与えないはずである。そこで、この不 自然な挙動を是正するために、初めにアウトリガートラスシ ステム以外の構造自重を計算し、その結果、上層部の内力値の ばらつきはなくなった。以後は、他の構造に対しアウトリガ ートラスシステムを後付けする形で解析を行う。

5. 風荷重解析

WTC 設計荷重である風荷重 220 kg/m²を一様に建物全高 さにわたり与え[6] 静的解析を行った。図 3 にアウトリガー トラスシステムの有無による降伏関数値の変化をコンター図 で示す。カラーレンジは降伏関数値を表しており、ここでは その最大値を 0.05 としている。図 3(a)は風荷重を載荷する 前の自重載荷時のもの、図3(b)は風荷重載荷時のものである。 風荷重は矢印に示すように X 軸方向に与えた。図 3 より、ア ウトリガートラスシステムを設置した方が外周部における降 伏関数値が若干大きくなっていることがわかる。

次に、軸力・曲げモーメントの分布を求めた。図4.5に各 階の軸力分布、図 6.7 に各階床部の曲げモーメント分布を示 す。各値は、それぞれの全断面塑性値で割ることで無次元化 したものであり、図1の緑色の印で示すコア柱 906 と外周柱 のものである。図4,5から分かるように、下層部ではアウト リガートラスシステムの有無による軸力変化は微小であるが、 上層部では風荷重載荷時にコア柱に対する軸力の負担が増し ている。一方、外周柱での負担は若干減少している。本来は 風下側の負担が増すところを、システムが風上側へ効果的に 軸力を分散させていることが分かる。また、図 6,7 の曲げモ ーメント分布は、外周柱ではほとんど差異が認められないが、 上層部のコア柱において大きな変化が見られる。特に風荷重 載荷時には、アウトリガートラスシステムが上層部の曲げモ ーメント緩和に貢献していることが分かる。全体的に、シス テムが存在することで上層部の剛性が増し、特に風上側・上 層部のコア柱において内力分布が変化し、風下側の負担を軽 減させていることが分かった。

6. 結言

本稿では、WTC 全体モデルの自重および風荷重に対する静 的解析を行った。アウトリガートラスシステムをWTC 本体 の自重解析の後に考慮することで、上層部における軸力や曲 げモーメントのばらつきが解消された。風荷重に対する剛性 を建物に付与するために設置したとされるアウトリガートラ スシステムの効果は、柱の位置によって異なるが、確かに存 在することが確認できた。特に風下側から風上側へ軸力を分 散させる効果は絶大で、恐らく 9.11 の際も、航空機の衝突に 伴う損傷を避けるような応力伝達経路が自然に生まれたこと は、容易に想像できる。今後は、WTC モデルに対し飛行機衝 突解析を行い、その際のアウトリガートラスシステムの存在 有無による内力変化、建物本体へのリダンダンシーの寄与が どの程度あるのか調べる予定である。

参考文献

- ASCE/FEMA : World Trade Center Building Performance Study, (2002).
 NIST : Structural Fire Response and Probable Collapse Sequence of the World Trade Center Towers, (2005).
- [3] 磯部大吾郎, チョウ ミョウ リン: 飛行機の衝突に伴う骨 組鋼構造の崩壊解析, 日本建築学会構造系論文集, 第 579 号, (2004), pp.39-46.
- [4] 都井 裕,磯部 大吾郎: 骨組構造の有限要素崩壊解析にお ける順応型 Shifted Integration 法,日本造船学会論文集,第 171 号, (1992), pp.363-371.
- [5]日本建築学会 WTC 崩壊特別調査委員会:世界貿易センタ ービル崩壊特別調査委員会報告書, (2003).
- [6]鋼構造デザイン資料集成 階層建築の実例と紹介 世界 貿易センタービル, 鹿島出版, (1978), pp.162-164.

図3降伏関数値の変化

